Affiner Raum/Affine Unabhängigkeit/Einführung/Textabschnitt


Es sei ein affiner Raum über einem -Vektorraum und es sei

eine endliche Familie von Punkten aus . Man nennt die Punktfamilie affin-unabhängig, wenn eine Gleichheit

mit

nur bei

für alle möglich ist.



Es sei ein affiner Raum über einem -Vektorraum und es sei

eine endliche Familie von Punkten aus . Dann sind die folgenden Aussagen äquivalent.

  1. Die Punkte sind affin unabhängig.
  2. Für jedes ist die Vektorfamilie

    linear unabhängig.

  3. Es gibt ein derart, dass die Vektorfamilie

    linear unabhängig ist.

  4. Die Punkte bilden in dem von ihnen erzeugten affinen Unterraum eine affine Basis.

Beweis

Siehe Aufgabe.