Charaktere/Monoid und Gruppe/Einführung/Textabschnitt


Es sei ein Monoid und ein Körper. Dann heißt ein Monoidhomomorphismus

ein Charakter von in .

Die Menge der Charaktere von nach bezeichnen wir mit . Mit dem trivialen Charakter (also der konstanten Abbildung nach ) und der Verknüpfung

ist selbst ein Monoid, und zwar ein Untermonoid des Abbildungsmonoid von nach . Da es zu jedem Charakter den inversen Charakter gibt, der durch

definiert ist, bildet sogar eine kommutative Gruppe(siehe unten).


Es sei ein Gruppe und ein Körper. Dann nennt man die Menge der Charaktere

die Charaktergruppe von (in ).




Es sei eine Gruppe, ein Körper und die Charaktergruppe zu . Dann gelten folgende Aussagen.

  1. ist eine kommutative Gruppe.
  2. Bei einer direkten Gruppenzerlegung ist .

Beweis

Siehe Aufgabe.



Es sei eine endliche kommutative Gruppe mit dem Exponenten , und es sei ein Körper, der eine primitive -te Einheitswurzel besitzt.

Dann sind und isomorphe Gruppen.

Nach Fakt  (2) und Fakt kann man annehmen, dass eine endliche zyklische Gruppe ist, und dass eine -te primitive Einheitswurzel besitzt. Jeder Gruppenhomomorphismus

ist durch eindeutig festgelegt, und wegen

ist eine -te Einheitswurzel. Umgekehrt kann man zu jeder -ten Einheitswurzel durch die Zuordnung nach Fakt und Fakt einen Gruppenhomomorphismus von nach definieren. Die Menge der -ten Einheitswurzeln ist, da eine primitive Einheitswurzel vorhanden ist, eine zyklische Gruppe der Ordnung . Also gibt es solche Homomorphismen. Wenn eine primitive Einheitswurzel ist, dann besitzt der durch festgelegte Homomorphismus die Ordnung und ist damit ein Erzeuger der Charaktergruppe, also .