Determinante/Körper/Rekursiv/Multilinearität/Ohne Beweis/Textabschnitt
Wir wollen zeigen, dass die rekursiv definierte Determinante eine „multilineare“ „alternierende“ Abbildung ist, wenn man die Identifizierung
vornimmt, bei der einer Matrix das -Tupel der Zeilen der Matrix zugeordnet wird. Wir fassen also im Folgenden eine Matrix als ein Spaltentupel
auf, wobei die einzelnen Einträge Zeilenvektoren der Länge sind.
Es sei ein Körper und .
Dann ist die Determinante
D.h., dass für jedes , für je Vektoren und für die Gleichheit
und für die Gleichheit
gilt.
Es seien
wobei wir die Einträge und die Streichungsmatrizen analog bezeichnen. Insbesondere ist also und . Wir beweisen die Aussage des Satzes durch Induktion nach , wobei der Fall klar ist. Für ist und
nach Induktionsvoraussetzung. Für ist und es ist . Insgesamt ergibt sich
Die Verträglichkeit mit der skalaren Multiplikation beweist man ähnlich, siehe Aufgabe.
Es sei ein Körper und . Dann besitzt die Determinante
folgende Eigenschaften.
- Wenn in zwei Zeilen übereinstimmen, so ist . D.h., dass die Determinante alternierend ist.
- Wenn man in zwei Zeilen vertauscht, so ändert sich die Determinante mit dem Faktor .
(1) und (2) werden parallel durch Induktion über bewiesen, wobei es für nichts zu zeigen gibt. Es sei also und . Die relevanten Zeilen seien und mit . Nach Definition ist . Nach Induktionsvoraussetzung für (1) sind dabei für , da ja dann zwei Zeilen übereinstimmen. Damit ist
wobei ist. Die beiden Matrizen und haben die gleichen Zeilen, allerdings tritt die Zeile in als die -te Zeile und in als die -te Zeile auf. Alle anderen Zeilen kommen in beiden Matrizen in der gleichen Reihenfolge vor. Durch insgesamt Vertauschungen von benachbarten Zeilen kann man in überführen. Nach der Induktionsvoraussetzung für (2) unterscheiden sich daher die Determinanten um den Faktor , also ist . Setzt man dies oben ein, so erhält man
Jetzt beweisen wir (2). Nach Teil (1) (für ) und aufgrund der Multilinearität ist
Es sei ein Körper und sei eine -Matrix über . Dann sind die folgenden Aussagen äquivalent.
- Es ist .
- Die Zeilen von sind linear unabhängig.
- ist invertierbar.
- Es ist .
Die Beziehung zwischen Rang, Invertierbarkeit und linearer Unabhängigkeit wurde schon in Fakt gezeigt. Es seien die Zeilen linear abhängig. Wir können nach Zeilenvertauschungen annehmen, dass ist. Dann ist nach Fakt und Fakt
Es seien nun die Zeilen linear unabhängig. Dann kann man durch Zeilenvertauschungen, Skalierung und Addition einer Zeile zu einer anderen Zeile die Matrix sukzessive zur Einheitsmatrix transformieren. Dabei ändert sich die Determinante stets durch einen von verschiedenen Faktor. Da die Determinante der Einheitsmatrix ist, muss auch die Determinante der Ausgangsmatrix sein.