Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikiversity
Haftungsausschluss
Suchen
Funktionen/Stammfunktionen/Tabelle
Sprache
Beobachten
Bearbeiten
Funktion
Stammfunktion
Bemerkung
Link
x
n
{\displaystyle {}x^{n}}
1
n
+
1
x
n
+
1
{\displaystyle {}{\frac {1}{n+1}}x^{n+1}}
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
x
n
{\displaystyle {}x^{n}}
1
n
+
1
x
n
+
1
{\displaystyle {}{\frac {1}{n+1}}x^{n+1}}
x
≠
0
{\displaystyle {}x\neq 0}
,
n
∈
Z
,
n
≠
−
1
{\displaystyle {}n\in \mathbb {Z} ,\,n\neq -1}
x
a
{\displaystyle {}x^{a}}
1
a
+
1
x
a
+
1
{\displaystyle {}{\frac {1}{a+1}}x^{a+1}}
x
∈
R
+
{\displaystyle {}x\in \mathbb {R} _{+}}
,
a
∈
R
,
a
≠
−
1
{\displaystyle {}a\in \mathbb {R} ,\,a\neq -1}
∙
{\displaystyle {}\bullet }
x
−
1
{\displaystyle {}x^{-1}}
ln
x
{\displaystyle {}\ln x}
x
∈
R
+
{\displaystyle {}x\in \mathbb {R} _{+}}
∙
{\displaystyle {}\bullet }
ln
x
{\displaystyle {}\ln x}
x
ln
x
−
x
{\displaystyle {}x\ln x-x}
x
∈
R
+
{\displaystyle {}x\in \mathbb {R} _{+}}
∙
{\displaystyle {}\bullet }
exp
x
{\displaystyle {}\exp x}
exp
x
{\displaystyle {}\exp x}
∙
{\displaystyle {}\bullet }
sinh
x
{\displaystyle {}\sinh x}
cosh
x
{\displaystyle {}\cosh x}
cosh
x
{\displaystyle {}\cosh x}
sinh
x
{\displaystyle {}\sinh x}
sin
x
{\displaystyle {}\sin x}
−
cos
x
{\displaystyle {}-\cos x}
∙
{\displaystyle {}\bullet }
cos
x
{\displaystyle {}\cos x}
sin
x
{\displaystyle {}\sin x}
∙
{\displaystyle {}\bullet }
tan
x
{\displaystyle {}\tan x}
−
ln
(
cos
x
)
{\displaystyle {}-\ln(\cos x)}
x
∈
R
,
−
π
2
<
x
<
π
2
{\displaystyle {}x\in \mathbb {R} ,\,-{\frac {\pi }{2}}<x<{\frac {\pi }{2}}}
∙
{\displaystyle {}\bullet }
1
x
2
+
1
{\displaystyle {}{\frac {1}{x^{2}+1}}}
arctan
x
{\displaystyle {}\arctan x}
x
∈
R
{\displaystyle {}x\in \mathbb {R} }
∙
{\displaystyle {}\bullet }
1
x
2
+
b
x
+
c
{\displaystyle {}{\frac {1}{x^{2}+bx+c}}}
1
−
△
arctan
1
−
△
(
x
+
b
2
)
{\displaystyle {}{\frac {1}{\sqrt {-\triangle }}}\arctan {\frac {1}{\sqrt {-\triangle }}}{\left(x+{\frac {b}{2}}\right)}}
△
=
b
2
−
4
c
4
<
0
{\displaystyle {}\triangle ={\frac {b^{2}-4c}{4}}<0}
∙
{\displaystyle {}\bullet }
1
1
−
x
2
{\displaystyle {}{\frac {1}{1-x^{2}}}}
1
2
ln
1
+
x
1
−
x
=
1
2
(
ln
(
1
+
x
)
−
ln
(
1
−
x
)
)
{\displaystyle {}{\frac {1}{2}}\ln {\frac {1+x}{1-x}}={\frac {1}{2}}{\left(\ln \left(1+x\right)-\ln \left(1-x\right)\right)}}
x
∈
R
,
−
1
<
x
<
1
{\displaystyle {}x\in \mathbb {R} ,\,-1<x<1}
∙
{\displaystyle {}\bullet }
1
cos
2
x
{\displaystyle {}{\frac {1}{\cos ^{2}x}}}
tan
x
{\displaystyle {}\tan x}
x
∈
R
,
−
π
2
<
x
<
π
2
{\displaystyle {}x\in \mathbb {R} ,\,-{\frac {\pi }{2}}<x<{\frac {\pi }{2}}}
∙
{\displaystyle {}\bullet }
x
2
−
1
{\displaystyle {}{\sqrt {x^{2}-1}}}
1
2
(
x
⋅
x
2
−
1
−
arcosh
x
)
{\displaystyle {}{\frac {1}{2}}{\left(x\cdot {\sqrt {x^{2}-1}}-\,\operatorname {arcosh} \,x\,\right)}}
|
x
|
≥
1
{\displaystyle {}\vert {x}\vert \geq 1}
∙
{\displaystyle {}\bullet }
oder
∙
{\displaystyle {}\bullet }
1
−
x
2
{\displaystyle {}{\sqrt {1-x^{2}}}}
1
2
(
x
⋅
1
−
x
2
+
arcsin
x
)
{\displaystyle {}{\frac {1}{2}}{\left(x\cdot {\sqrt {1-x^{2}}}+\arcsin x\right)}}
x
∈
R
,
−
1
<
x
<
1
{\displaystyle {}x\in \mathbb {R} ,\,-1<x<1}
∙
{\displaystyle {}\bullet }
oder
∙
{\displaystyle {}\bullet }
x
2
+
1
{\displaystyle {}{\sqrt {x^{2}+1}}}
1
2
(
x
⋅
x
2
+
1
+
arsinh
x
)
{\displaystyle {}{\frac {1}{2}}{\left(x\cdot {\sqrt {x^{2}+1}}+\,\operatorname {arsinh} \,x\,\right)}}
∙
{\displaystyle {}\bullet }
1
x
2
+
1
{\displaystyle {}{\frac {1}{\sqrt {x^{2}+1}}}}
arsinh
x
{\displaystyle {}\,\operatorname {arsinh} \,x\,}
∙
{\displaystyle {}\bullet }
1
x
2
−
1
{\displaystyle {}{\frac {1}{\sqrt {x^{2}-1}}}}
arcosh
x
{\displaystyle {}\,\operatorname {arcosh} \,x\,}
|
x
|
>
1
{\displaystyle {}\vert {x}\vert >1}
∙
{\displaystyle {}\bullet }
1
1
−
x
2
{\displaystyle {}{\frac {1}{\sqrt {1-x^{2}}}}}
arcsin
x
{\displaystyle {}\arcsin x}
−
1
≤
x
≤
1
{\displaystyle {}-1\leq x\leq 1}
∙
{\displaystyle {}\bullet }