Homotopie von Wegen/Kurzübersicht/Einführung/Textabschnitt


Es sei und seien stetige Wege in einen topologischen Raum mit der Eigenschaft, dass und gilt. Eine Homotopie relativ zu zwischen und ist eine stetige Abbildung

die die folgenden Eigenschaften erfüllt.

  1. für alle .
  2. für alle .
  3. für alle .
  4. für alle .

Zwei Wege

heißen homotop, wenn es eine solche Homotopie zwischen ihnen gibt. Man schreibt für homotope Wege. Die Homotopie ist eine Äquivalenzrelation auf der Menge der stetigen Wege von nach , die zugehörigen Äquivalenzklassen heißen Homotopieklassen.

Zwei stetige Wege, für die der Endpunkt des ersten Weges mit dem Anfangspunkt des zweiten Weges übereinstimmt, kann man miteinander verknüpfen, indem man zuerst den ersten Weg und anschließend den zweiten Weg durchläuft. Man spricht von der Hintereinanderlegung von Wegen und schreibt einfach , wobei zuerst durchlaufen wird. Als Definitionsbereich erhält man dabei das Intervall . Man kann aber, indem man die beiden Wege doppelt so schnell durchläuft, auch das Einheitsintervall als Definitionsbereich wählen. Unter dem Rückweg zu versteht man den entgegengesetzt durchlaufenen Weg, man bezeichnet ihn mit .



Es sei ein topologischer Raum und seien Punkte. Dann gelten folgende Aussagen.

  1. Die Homotopie zwischen stetigen Wegen von nach mit als Anfangspunkt und als Endpunkt ist eine Äquivalenzrelation.
  2. Wenn und zueinander homotop sind, so sind auch die Rückwege und zueinander homotop.
  3. Wenn und homotope Wege von nach und und homotope Wege von nach sind, so sind auch die Verknüpfungen und homotop.
  4. Die Hintereinanderlegung ist zum konstanten Weg homotop.