Subgraph und Epigraph sind nach unten bzw. nach oben unbeschränkt. Im Kontext der Integrationstheorie interessiert man sich für den positiven Subgraphen, der durch die -Achse nach unten beschränkt ist. Der Graph der Funktion gehört sowohl zum Subgraphen als auch zum Epigraphen.
Bei beiden Begriffen muss man lediglich überprüfen, ob die Verbindungsstrecke zwischen je zwei Punkten des Graphen jeweils oberhalb bzw. unterhalb des Graphen verläuft, siehe
Aufgabe.
Die Verbindungsstrecke zwischen
und
ist durch
, ,
bzw. als Ausschnitt
(zu
)
des Graphen zur linearen Funktion
gegeben. Im differenzierbaren Fall gibt es einfache Ableitungskriterien für diese Verhaltensweisen, wobei wir nur den konvexen Fall anführen.
Es sei zunächst konvex und seien zwei Punkte
aus gegeben. Es sei
die lineare Funktion, die und verbindet. Aufgrund der Konvexität ist
für alle
.
Für die Differenzenquotienten gilt daher
Durch Übergang zu den Limiten für bzw. folgt
Es sei nun als nicht konvex vorausgesetzt und seien zwei Punkte
aus mit der Eigenschaft gegeben, dass die verbindende Gerade von
und
nicht vollständig oberhalb des Graphen von verläuft. Es gibt also ein
mit
,
wobei wieder die verbindende lineare Funktion ist. Durch Übergang zu können wir
und
annehmen. Nach dem
Mittelwertsatz
gibt es Punkte
und
mit
und
,
sodass nicht wachsend ist.