Kurs:Algebraische Kurven (Osnabrück 2008)/Arbeitsblatt 9/latex
\inputaufgabe
{3}
{
Wir betrachten die Abbildung \maabbeledisp {} { {\mathbb A}^{2}_{K} \supseteq D(s) } { { {\mathbb A}_{ K }^{ 3 } } } { (s,t) } { \left( s , \, { \frac{ t^2 }{ s } } , \, t \right) = (x,y,z) } {.} Bestimme eine algebraische Gleichung $F$ für das Bild. Untersuche die Abbildung auf Injektivität und Surjektivität (als Abbildung nach $V(F)$). Vergleiche diese Abbildung mit den in Aufgabe 6.3 diskutierten Abbildungen.
}
{} {}
\inputaufgabe
{3}
{
Bestimme für die in Beispiel ***** berechnete Trajektorie die Koordinaten der Punkte, wo die Kurve singulär ist.
}
{} {}
\inputaufgabe
{3}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und sei
\mavergleichskettedisp
{\vergleichskette
{ {\mathfrak a}_1
}
{ \subseteq} { {\mathfrak a}_2
}
{ \subseteq} { {\mathfrak a}_3
}
{ \subseteq} {\ldots
}
{ } {
}
}
{}{}{}
eine aufsteigende Kette von
\definitionsverweis {Idealen}{}{.}
Zeige, dass die
\definitionsverweis {Vereinigung}{}{}
\mathl{\bigcup_{n \in \N} {\mathfrak a}_n}{} ebenfalls ein Ideal ist. Zeige durch ein einfaches Beispiel, dass die Vereinigung von Idealen im Allgemeinen kein Ideal sein muss.
}
{} {}
\inputaufgabe
{3}
{
Es sei $K$ ein Körper und sei
\mathdisp {K[X_n, \, n \in \N]} { }
der Polynomring über $K$ in unendlich vielen Variablen. Man beschreibe darin ein nicht endlich erzeugtes Ideal und eine unendliche, echt aufsteigende Idealkette.
}
{} {}
\inputaufgabe
{4}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und sei
\mathl{{\mathfrak a}}{} ein
\definitionsverweis {Ideal}{}{}
mit dem
\definitionsverweis {Restklassenring}{}{}
\mavergleichskettedisp
{\vergleichskette
{ S
}
{ =} { R/{\mathfrak a}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Zeige, dass die Ideale von $S$ eindeutig denjenigen Idealen von $R$ entsprechen, die ${\mathfrak a}$ umfassen.
}
{Zeige, dass das Gleiche gilt für Primideale, Radikalideale und maximale Ideale.} {}
\inputaufgabe
{2}
{
Begründe, warum der Ring
\mathdisp {\Z[X,Y,Z,W]/(XY-ZW, 5X^8-YZ^3+2WXY)} { }
\definitionsverweis {noethersch}{}{}
ist.
}
{} {}
\inputaufgabe
{4}
{
Zeige, dass $\mathbb Q$ keine \definitionsverweis {Algebra von endlichem Typ}{}{} über $\mathbb Z$ ist.
}
{} {}
\inputaufgabe
{4}
{
Sei $K$ ein
\definitionsverweis {Körper}{}{}
und sei
\mathl{A=K[X,Y]}{.} Finde eine
$K$-\definitionsverweis {Unteralgebra}{}{}
von $A$, die nicht endlich erzeugt ist.
}
{} {}
\inputaufgabe
{3}
{
Man gebe ein Beispiel eines nicht-noetherschen Ringes, dessen \definitionsverweis {Reduktion}{}{} ein Körper ist.
}
{} {}
\inputaufgabe
{3}
{
Zeige, dass für affin-algebraische Mengen
\mathl{V,V' \subseteq \mathbb A^n_K}{} die Beziehung der
\definitionsverweis {affin-linearen Äquivalenz}{}{}
eine
\definitionsverweis {Äquivalenzrelation}{}{}
ist.
}
{} {}
\inputaufgabe
{4}
{
Es seien
\mathl{F,G \in K[X_1, \ldots, X_n]}{} Polynome und
\mathl{K \subseteq L}{} eine \definitionsverweis {Körpererweiterung}{}{.}
Diskutiere, wie sich die verschiedenen Äquivalenzbegriffeaus der siebten Vorlesung für $F$ und $G$ (und für $V(F)$ und $V(G)$) unter dem Körperwechsel verhalten.
}
{} {}