Kurs:Analysis (Osnabrück 2021-2023)/Teil II/Arbeitsblatt 41/latex

\setcounter{section}{41}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Wir betrachten die \definitionsverweis {Differentialgleichung}{}{}
\mathdisp {y'=y} { }
mit der Anfangsbedingung $y(0)=1$. Bestimme zur Schrittweite
\mathl{s= { \frac{ 1 }{ k } }}{} die approximierenden Punkte $P_n$ gemäß dem Polygonzugverfahren. Bestimme insbesondere $P_k$. Was passiert mit $P_k$ für
\mathl{k \rightarrow \infty}{?}

}
{} {}





\inputaufgabe
{}
{

Wir betrachten das \definitionsverweis {Vektorfeld}{}{} \maabbeledisp {F} {\R \times \R^2} {\R^2 } {(t,x,y)} {(-y,x) } {.} Es sei
\mavergleichskette
{\vergleichskette
{P_0 }
{ \neq }{ (0,0) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{s }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Schrittweite. Zeige, dass das Polygonzugverfahren zu einem Streckenzug
\mathl{P_0,P_1,P_2, \ldots}{} führt, bei dem der Abstand der Punkte zum Nullpunkt gegen unendlich läuft \zusatzklammer {obwohl nach Beispiel 40.8 die Lösungskurven Kreise beschreiben} {} {.} Wie verhalten sich die Winkel am Nullpunkt, die durch \mathkor {} {P_n} {und} {P_{n+1}} {} gegeben sind.

}
{} {}




\inputaufgabe
{}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {y'=y \text{ mit } y(0)=1} { }
durch einen \definitionsverweis {Potenzreihenansatz}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {y'=ty+1 \text{ mit } y(0)=0} { }
durch einen \definitionsverweis {Potenzreihenansatz}{}{} bis zur Ordnung $5$.

}
{} {}




\inputaufgabe
{}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {y'=y^3-y-4t+2t^2 \text{ mit } y(0)=2} { }
durch einen \definitionsverweis {Potenzreihenansatz}{}{} bis zur vierten Ordnung.

}
{} {}




\inputaufgabe
{}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {y'=y^2+t^2y-5ty^2+3t^3 \text{ mit } y(0)=0} { }
durch einen \definitionsverweis {Potenzreihenansatz}{}{} bis zur vierten Ordnung.

}
{} {}




\inputaufgabe
{}
{

\aufzaehlungdrei{Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ y^{\prime \prime} }
{ =} { - \sin y }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{y(0) }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{y'(0) }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} durch einem \definitionsverweis {Potenzreihenansatz}{}{} bis zur Ordnung $5$. }{Löse das Anfangswertproblem
\mavergleichskettedisp
{\vergleichskette
{ y^{\prime \prime} }
{ =} { - y }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{y(0) }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{y'(0) }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} durch einem Potenzreihenansatz bis zur Ordnung $5$. }{Vergleiche die Lösungen zu (1) und (2). }

}
{} {}

Für die beiden folgenden Aufgaben verwende man die Potenzreihe
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ 1+u } } }
{ =} { 1-u+u^2-u^3+u^4 \pm \ldots }
{ } { }
{ } { }
{ } { }
} {}{}{.} Für den inhaltlichen Hintergrund siehe Beispiel Anhang 3.5 bzw. Beispiel 3.6.




\inputaufgabegibtloesung
{}
{

Löse mit einem \definitionsverweis {Potenzreihenansatz}{}{} das \definitionsverweis {Anfangswertproblem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ x^{\prime \prime} }
{ =} { { \frac{ -2gx -4x (x')^2 }{ 1+4 x^2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{x(0) }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{x'(0) }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} bis zur Ordnung $4$. Dabei ist $g$ eine Konstante.

}
{} {}




\inputaufgabe
{}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mavergleichskettealign
{\vergleichskettealign
{ x^{\prime \prime} }
{ =} {-g x \sqrt{1-x^2} - { \frac{ x }{ 1 -x^2 } } x'^2 }
{ } { }
{ } { }
{ } {}
} {} {}{.} mit
\mavergleichskette
{\vergleichskette
{x(0) }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{x'(0) }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} durch einen \definitionsverweis {Potenzreihenansatz}{}{} bis zur Ordnung $4$.

}
{} {}




\inputaufgabegibtloesung
{}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {y^{\prime \prime} =3yy'+y^2 \text{ mit } y(0)=0 \text{ und } y'(0) =2} { }
durch einen \definitionsverweis {Potenzreihenansatz}{}{} bis zur vierten Ordnung.

}
{} {}




\inputaufgabe
{}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {\begin{pmatrix} x \\y \end{pmatrix}^{\prime \prime} = \begin{pmatrix} xt^2-y^2t \\xy \end{pmatrix} \text{ mit } \begin{pmatrix} x(0) \\y(0) \end{pmatrix} = \begin{pmatrix} 0 \\0 \end{pmatrix} \text{ und } \begin{pmatrix} x'(0) \\y'(0) \end{pmatrix} = \begin{pmatrix} 1 \\-1 \end{pmatrix}} { }
durch einen \definitionsverweis {Potenzreihenansatz}{}{} bis zur vierten Ordnung.

}
{} {}




\inputaufgabe
{}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {\begin{pmatrix} x \\y \end{pmatrix}^{\prime \prime} = \begin{pmatrix} t^3-yt^2 \\tx^2y- \sinh t \end{pmatrix} \text{ mit } \begin{pmatrix} x(0) \\y(0) \end{pmatrix} = \begin{pmatrix} 0 \\1 \end{pmatrix} \text{ und } \begin{pmatrix} x'(0) \\y'(0) \end{pmatrix} = \begin{pmatrix} 2 \\0 \end{pmatrix}} { }
durch einen \definitionsverweis {Potenzreihenansatz}{}{} bis zur vierten Ordnung.

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen des \definitionsverweis {linearen Differentialgleichungssystems}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} \sin t & 0 \\ 0 & { \frac{ 1 }{ t } } \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} + \begin{pmatrix} -\sin t \\t^5 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} für
\mavergleichskette
{\vergleichskette
{t }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen des \definitionsverweis {linearen Differentialgleichungssystems}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} t & 1-t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}





\inputaufgabe
{}
{

Bestimme alle Lösungen des \definitionsverweis {linearen Differentialgleichungssystems}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} 2 & t \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen des \definitionsverweis {linearen Differentialgleichungssystems}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} 3 & t \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen \zusatzklammer {für
\mavergleichskettek
{\vergleichskettek
{t }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} des \definitionsverweis {linearen Differentialgleichungssystems}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} 1 & t^3-t \\ 0 & { \frac{ 1 }{ t } } \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme alle Lösungen des \definitionsverweis {linearen Differentialgleichungssystems}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} 3 & t^2-t+5 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ I }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {reelles Intervall}{}{} und seien \maabbdisp {f_{11},f_{12},f_{21},f_{22}} {I} { \R } {} \definitionsverweis {differenzierbare Funktionen}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{f_{11}(t)f_{22}(t)- f_{21}(t)f_{12}(t) }
{ \neq} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ t }
{ \in }{ I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Wir betrachten das \definitionsverweis {lineare Differentialgleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} { \frac{ f'_{11} f_{22} -f'_{12} f_{21} }{ f_{11} f_{22} - f_{21} f_{12} } } & { \frac{ -f'_{11} f_{12} + f'_{12} f_{11} }{ f_{11} f_{22} - f_{21} f_{12} } } \\ { \frac{ f'_{21} f_{22} - f'_{22} f_{21} }{ f_{11} f_{22} - f_{21} f_{12} } } & { \frac{ -f_{12} f'_{21} + f'_{22} f_{11} }{ f_{11} f_{22} - f_{21} f_{12} } } \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass sowohl
\mathl{\begin{pmatrix} f_{11} \\f_{21} \end{pmatrix}}{} als auch
\mathl{\begin{pmatrix} f_{12} \\f_{22} \end{pmatrix}}{} Lösungen des Differentialgleichungssystems sind.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{ M(t) }
{ =} {(a_{ij}(t))_{1 \leq i,j \leq n} }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \zusatzklammer {variable} {} {} $n \times n$-Matrix, deren Einträge stetige Funktionen \maabbdisp {a_{ij}} {I} {\R } {} seien. Es sei
\mavergleichskette
{\vergleichskette
{ \det { \left( M(t) \right) } }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ t }
{ \in }{ I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass die einzige konstante Lösung der linearen Differentialgleichung
\mavergleichskette
{\vergleichskette
{ v' }
{ = }{Mv }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Nulllösung ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{v' }
{ =} {Mv }
{ } { }
{ } { }
{ } { }
} {}{}{} ein \definitionsverweis {lineares Differentialgleichungssystem}{}{} auf
\mathl{I \times \R^n}{} \zusatzklammer {$I$ ein reelles Intervall} {} {} mit einer Funktionenmatrix
\mavergleichskettedisp
{\vergleichskette
{M(t) }
{ =} {(a_{ij}(t))_{1 \leq i,j \leq n} }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei das zugrunde liegende Vektorfeld zugleich ein \definitionsverweis {Zentralfeld}{}{} sei. Zeige, dass die Matrix die Gestalt
\mavergleichskettedisp
{\vergleichskette
{M(t) }
{ =} { \varphi(t) \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit einer geeigneten Funktion \maabbdisp {\varphi} {I} {\R } {} besitzt.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{M(t)=(a_{ij}(t))_{1 \leq i,j \leq n}}{} eine \zusatzklammer {variable} {} {} $n \times n$-Matrix, deren Einträge Funktionen \maabbdisp {a_{ij}} {I} {\R } {} seien. Es sei
\mathl{u \in \R^n}{} ein Eigenvektor zum Eigenwert $\lambda$ für alle
\mathl{t \in I}{.} Zeige, dass
\mathl{e^{\lambda t} \cdot u}{} eine Lösung der linearen Differentialgleichung
\mathl{v'=Mv}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{M(t) }
{ = }{ (a_{ij}(t))_{1 \leq i,j \leq n} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \zusatzklammer {variable} {} {} $n \times n$-Matrix, deren Einträge stetige Funktionen \maabbdisp {a_{ij}} {I} {\R } {} seien. Es sei
\mathl{u \in \R^n}{} ein \zusatzklammer {konstanter} {} {} Eigenvektor von $M(t)$ zum \zusatzklammer {variablen, von $t$ differenzierbar abhängigen} {} {} Eigenwert $\lambda(t)$. Zeige durch ein Beispiel, dass
\mathl{e^{\lambda(t) t} \cdot u}{} keine Lösung der linearen Differentialgleichung
\mavergleichskette
{\vergleichskette
{v' }
{ = }{Mv }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sein muss.

}
{} {}





\inputaufgabe
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{ M(t) }
{ =} {(a_{ij}(t))_{1 \leq i,j \leq n} }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \zusatzklammer {variable} {} {} $n \times n$-Matrix, deren Einträge stetige Funktionen \maabbdisp {a_{ij}} {I} {\R } {} seien. Es sei
\mavergleichskette
{\vergleichskette
{u(t) }
{ \in }{ \R^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \zusatzklammer {variabler, von $t$ differenzierbar abhängiger} {} {} Eigenvektor von $M(t)$ zum konstanten Eigenwert $\lambda$. Zeige durch ein Beispiel, dass
\mathl{e^{\lambda t} \cdot u(t)}{} keine Lösung der linearen Differentialgleichung
\mavergleichskette
{\vergleichskette
{v' }
{ = }{Mv }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sein muss.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{v' }
{ = }{Mv }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {lineares Differentialgleichungssystem}{}{} auf dem endlichdimensionalen reellen Vektorraum $V$ und \maabb {\varphi} {V} {W } {} eine \definitionsverweis {bijektive}{}{} \definitionsverweis {lineare Abbildung}{}{.} Zeige, dass die transformierte Differentialgleichung auf $W$ ebenfalls linear ist.

}
{} {}




\inputaufgabe
{}
{

Löse mit einem \definitionsverweis {Potenzreihenansatz}{}{} das \definitionsverweis {Anfangswertproblem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} t^2-1 & t^3+t+2 \\ t+3 & t^2+t \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit der Anfangsbedingung
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix} (0) }
{ =} { \begin{pmatrix} 1 \\2 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} bis zur fünften Ordnung.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{6}
{

a) Man schreibe ein Computerprogramm, das zu dem Vektorfeld aus Beispiel 41.3 zu einem Startzeitpunkt $t_0$, einem Startpunkt
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} a \\b \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und einer vorgegebenen Schrittweite
\mavergleichskette
{\vergleichskette
{ s }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die approximierenden Punkte
\mathl{P_n}{} berechnet.

b) Berechne mit diesem Programm die Punkte $P_n$ für \aufzaehlungacht{
\mavergleichskette
{\vergleichskette
{ t_0 }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} 1 \\1 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 10 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 0,1,2,3,4,5, 10 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{
\mavergleichskette
{\vergleichskette
{ t_0 }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} 1 \\1 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 100 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 100 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{
\mavergleichskette
{\vergleichskette
{ t_0 }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} 1 \\1 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 1000 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 1000 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{
\mavergleichskette
{\vergleichskette
{ t_0 }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} 0,999 \\1,001 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 1000 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 1000 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{
\mavergleichskette
{\vergleichskette
{ t_0 }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} 0,99 \\1,01 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 1000 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ = }{1000 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{
\mavergleichskette
{\vergleichskette
{ t_0 }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} 0,9 \\1,1 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 1000 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 1000 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{
\mavergleichskette
{\vergleichskette
{ t_0 }
{ = }{ -4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} -3 \\5 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 10 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 100 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{
\mavergleichskette
{\vergleichskette
{ t_0 }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ P_0 }
{ = }{ \begin{pmatrix} 1 \\0 \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 1000 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 1000 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }

}
{\zusatzklammer {Abzugeben ist lediglich Teil b), und zwar in einer leserfreundlichen Form.} {} {}} {}




\inputaufgabe
{5 (1+2+2)}
{

a) Übersetze das \definitionsverweis {Anfangswertproblem zweiter Ordnung}{}{}
\mathdisp {y^{\prime \prime} =- y \text{ mit } y(0)=0 \text{ und } y'(0) = 1} { }
in ein \definitionsverweis {Differentialgleichungssystem erster Ordnung}{}{.}

b) Bestimme mit dem Polygonzugverfahren zur Schrittweite
\mavergleichskette
{\vergleichskette
{ s }
{ = }{ { \frac{ 1 }{ 2 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Näherungspunkte
\mathl{P_0,P_1,P_2,P_3,P_4}{} für dieses System.

c) Berechne den Wert des zugehörigen Streckenzuges an der Stelle
\mavergleichskette
{\vergleichskette
{ t }
{ = }{ \pi/2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabe
{6}
{

Löse das \definitionsverweis {Anfangswertproblem}{}{}
\mathdisp {\begin{pmatrix} x \\y \end{pmatrix}^{\prime \prime} = \begin{pmatrix} x^2t-xyt+y^3-yt^3 \\x^3-xy^2+ \cos t \end{pmatrix} \text{ mit } \begin{pmatrix} x(0) \\y(0) \end{pmatrix} = \begin{pmatrix} 0 \\0 \end{pmatrix} \text{ und } \begin{pmatrix} x'(0) \\y'(0) \end{pmatrix} = \begin{pmatrix} 2 \\-1 \end{pmatrix}} { }
durch einen \definitionsverweis {Potenzreihenansatz}{}{} bis zur vierten Ordnung.

}
{} {}




\inputaufgabe
{4}
{

Bestimme alle Lösungen des \definitionsverweis {linearen Differentialgleichungssystems}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} -2 & -t^2-3t+4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{8 (2+2+4)}
{

Wir betrachten das \definitionsverweis {lineare Differentialgleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} \cos t & - \sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} \aufzaehlungdrei{Erstelle eine Differentialgleichung in einer Variablen, die die Funktion
\mavergleichskette
{\vergleichskette
{ z(t) }
{ = }{ x^2(t)+y^2(t) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} zu einer Lösung
\mathl{(x,y)}{} erfüllen muss. }{Finde eine Lösung für $z(t)$ aus Teil (1). }{Finde eine nichttriviale Lösung des Differentialgleichungssystems. }

}
{} {Bemerkung: Im ersten und zweiten Teil wird untersucht, wie sich bei einer Lösung des Systems der Abstand zum Nullpunkt \zusatzklammer {bzw. dessen Quadrat} {} {} verhält. Es liegt nahe, sich für den dritten Teil zu überlegen, wie sich bei einer Lösung der Winkel zur $x$-Achse verhält \zusatzklammer {Polarkoordinaten} {} {.}}




\inputaufgabe
{4}
{

Finde eine nichttriviale Lösung \zusatzklammer {für \mathlk{t>1}{}} {} {} zum \definitionsverweis {linearen Differentialgleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} x \\y \end{pmatrix}' }
{ =} { \begin{pmatrix} { \frac{ 4t^4 -1 }{ t^5-t } } & { \frac{ -3t }{ t^4 - 1 } } \\ { \frac{ -t }{ t^4 - 1 } } & { \frac{ 3t^4-2 }{ t^5-t } } \end{pmatrix} \begin{pmatrix} x \\y \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit Hilfe von Aufgabe 41.19.

}
{} {}


Die für
\mathbed {t \in \R} {}
{-1 < t< 1} {}
{} {} {} {,} und ein
\mathl{n\in \N}{} definierte \definitionsverweis {lineare Differentialgleichung}{}{}
\mathdisp {y^{\prime \prime} - \frac{2t}{1-t^2}y'+ \frac{n(n+1)}{1-t^2} y =0} { }
heißt \definitionswort {Legendresche Differentialgleichung}{} zum Parameter $n$.





\inputaufgabe
{5}
{

Zeige, dass das $n$-te \stichwort {Legendre-Polynom} {\zusatzfussnote {Hier bedeutet das hochgestellte \mathlk{(n)}{} die $n$-te Ableitung} {.} {}}
\mathdisp {{ \frac{ 1 }{ 2^n (n!) } } ((t^2-1)^n)^{(n)}} { }
eine Lösung der \definitionsverweis {Legendreschen Differentialgleichung}{}{} zum Parameter $n$ ist.

}
{} {}