Kurs:Einführung in die mathematische Logik/20/Klausur/kontrolle


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Punkte 3 3 2 2 2 1 3 6 3 0 2 3 0 2 0 0 4 36








In einer U-Bahn-Station wird der Zugang und der Ausgang über eine elektronische Karte geregelt, die man an einen Sensor halten muss, damit sich die Schranke öffnet. Es gibt 5 Ausgänge, aber nur 2 Zugänge. Was haben sich die Leute dabei vermutlich gedacht?



Betrachte die beiden Aussagen „Alkohol ist keine Lösung“ und „Kein Alkohol ist auch keine Lösung“. Formalisiere die beiden Aussagen. Man nehme an, dass beide Aussagen wahr sind. Mit welcher aussagenlogischen Regel kann man daraus auf eine Aussage schließen, in der Alkohol nicht vorkommt?



Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt.

w w w w
w w f f
w f w f
w f f f
f w w f
f w f f
f f w f
f f f w



Lege in der Skizze für die drei Häuser überschneidungsfrei Wege zu den zugehörigen gleichfarbigen Gartentoren an.



Skizziere ein Verfahren, wie man (bei abzählbar) eine Auflistung sämtlicher syntaktischer Tautologien aus erhalten kann.



Es sei eine aussagenlogische Ausdrucksmenge und es sei mit . Zeige mit dem Lemma von Zorn, dass es eine maximal widerspruchsfreie Ausdrucksmenge mit gibt.



Es seien Variablen, Terme und ein Ausdruck in einer prädikatenlogischen Sprache. Zeige, dass

im Allgemeinen nicht allgemeingültig ist.





Man bringe die Aussage

in disjunktive Normalform.



Es sei die Sprache der Aussagenlogik zu einer Aussagenvariablenmenge und es sei eine Wahrheitsbelegung der Variablen mit zugehöriger Interpretation . Zeige, dass maximal widerspruchsfrei ist.





Es sei eine Variable, ein Term und ein Ausdruck. Zeige







Formuliere den Vollständigkeitssatz der Modallogik und skizziere in Grundzügen, wie man ihn beweist.