Kurs:Elemente der Algebra (Osnabrück 2024-2025)/Vorlesung 28/latex

\setcounter{section}{28}






\zwischenueberschrift{Konstruierbare Einheitswurzeln}




\inputdefinition
{}
{

Es sei
\mathl{n \in \N_+}{.} Man sagt, dass \definitionswort {das regelmäßige $n$-Eck mit Zirkel und Lineal konstruierbar}{} ist, wenn die komplexe Zahl
\mavergleichskettedisp
{\vergleichskette
{ e^{2 \pi { \mathrm i} /n} }
{ =} { \cos \left( { \frac{ 2 \pi }{ n } } \right) + { \mathrm i} \sin \left( { \frac{ 2 \pi }{ n } } \right) }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \definitionsverweis {konstruierbare Zahl}{}{} ist.

}

Die Menge der komplexen Einheitswurzeln
\mathbed {e^{ \frac{2 \pi { \mathrm i} k } { n } }} {}
{k=0 , \ldots , n-1} {}
{} {} {} {,} bilden die Eckpunkte eines regelmäßigen $n$-Ecks, wobei $1$ eine Ecke bildet. Alle Eckpunkte liegen auf dem Einheitskreis. Die Ecke
\mathl{e^{ \frac{2 \pi { \mathrm i} } { n } }}{} ist eine primitive Einheitswurzel; wenn diese mit Zirkel und Lineal konstruierbar ist, so sind auch alle weiteren Eckpunkte konstruierbar, da diese ja Potenzen der primitiven Einheitswurzel sind. Das reguläre $n$-Eck ist genau dann konstruierbar, wenn der $n$-te Kreisteilungskörper ein Unterkörper der konstruierbaren Zahlen ist.

Bei
\mavergleichskette
{\vergleichskette
{n }
{ = }{1,2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} kann man sich darüber streiten, ob man von einem regelmäßigen $n$-Eck sprechen soll, jedenfalls gibt es die zugehörigen Einheitswurzeln und diese sind aus $\Q$, also erst recht konstruierbar. Das regelmäßige Dreieck ist ein gleichseitiges Dreieck und dieses ist konstruierbar nach Beispiel 27.11, da der dritte Kreisteilungskörper eine quadratische Körpererweiterung von $\Q$ ist und die Menge der konstruierbaren Zahlen nach Satz 26.5 unter quadratischen Körpererweiterungen abgeschlossen ist.

\zusatzklammer {man kann einfacher auch direkt zeigen, dass ein gleichseitiges Dreieck aus seiner Grundseite heraus konstruierbar ist} {} {.} Das regelmäßige Viereck ist ein Quadrat mit den Eckpunkten
\mathl{1, { \mathrm i}, -1, - { \mathrm i}}{,} und dieses ist ebenfalls konstruierbar. Das regelmäßige Fünfeck ist ebenfalls konstruierbar, wie in Beispiel 27.13 in Verbindung mit Satz 26.5 bzw. in Aufgabe 27.15 gezeigt wurde. Wir werden im Folgenden sowohl positive als auch negative Resultate zur Konstruierbarkeit von regelmäßigen $n$-Ecken vorstellen. Zunächst untersuchen wir den Zusammenhang zwischen der Konstruierbarkeit des $n$-Ecks und der Konstruierbarkeit des $k$-Ecks, wenn $k$ ein Teiler von $n$ ist. In diesem Fall lässt sich das regelmßige $k$-Eck in das regelmäßige $n$-Eck einschreiben.






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Pentagon_construct.gif} }
\end{center}
\bildtext {Konstruktion eines regulären Fünfecks mit Zirkel und Lineal} }

\bildlizenz { Pentagon construct.gif } {TokyoJunkie} {Mosmas} {PD} {en.wikipedia.org} {en:Image:Pentagon_construct.gif}





\inputfaktbeweis
{Zirkel und Lineal/Regelmäßiges n-Eck konstruierbar/Produkteigenschaften/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mathbed {m=kn} {}
{m,k,n \in \N_+} {}
{} {} {} {.}}
\faktuebergang {Dann gelten folgende Aussagen.}
\faktfolgerung {\aufzaehlungdrei{Das regelmäßige $2^r$-Eck,
\mavergleichskette
{\vergleichskette
{ r }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} ist \definitionsverweis {konstruierbar}{}{.} }{Wenn das regelmäßige $m$-Eck konstruierbar ist, so sind auch das regelmäßige $n$-Eck und das regelmäßige $k$-Eck konstruierbar. }{Wenn \mathkor {} {n} {und} {k} {} \definitionsverweis {teilerfremd}{}{} sind und wenn das regelmäßige $n$-Eck und das regelmäßige $k$-Eck konstruierbar sind, so ist auch das regelmäßige $m$-Eck konstruierbar.}}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {}{}{}
{(1) folgt daraus, dass eine Winkelhalbierung stets mit Zirkel und Lineal durchführbar ist.}
{} \teilbeweis {}{}{}
{(2). Nach Voraussetzung ist
\mathl{e^{ \frac{2 \pi { \mathrm i} }{ nk } }}{} \definitionsverweis {konstruierbar}{}{.} Dann ist auch nach Satz 25.9 die Potenz
\mavergleichskettedisp
{\vergleichskette
{ { \left( e^{ \frac{2 \pi { \mathrm i} }{ nk } } \right) }^n }
{ =} { e^{ \frac{2 \pi { \mathrm i} }{ k } } }
{ } {}
{ } {}
{ } {}
} {}{}{} konstruierbar.}
{} \teilbeweis {}{}{}
{(3). Es seien nun \mathkor {} {e^{ \frac{2 \pi { \mathrm i} }{ n } }} {und} {e^{ \frac{2 \pi { \mathrm i} }{ k } }} {} konstruierbar und \mathkor {} {n} {und} {k} {} teilerfremd. Nach dem Lemma von Bezout gibt es dann ganze Zahlen
\mathl{r,s}{} mit
\mavergleichskette
{\vergleichskette
{ rn+sk }
{ = }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Daher ist auch
\mavergleichskettedisp
{\vergleichskette
{ { \left( e^{ \frac{2 \pi { \mathrm i} }{ n } } \right) }^s { \left( e^{ \frac{2 \pi { \mathrm i} }{ k } } \right) }^r }
{ =} { { \left( e^{ \frac{2 \pi { \mathrm i} k } { nk } } \right) }^s { \left( e^{ \frac{2 \pi { \mathrm i} n } { nk } } \right) }^r }
{ =} { e^{ \frac{2 \pi { \mathrm i} sk } { nk } } e^{ \frac{2 \pi { \mathrm i} rn } { nk } } }
{ =} { e^{ \frac{2 \pi { \mathrm i} (sk+rn) } { nk } } }
{ =} { e^{ \frac{2 \pi { \mathrm i} }{ nk } } }
} {}{}{} konstruierbar.}
{}

}

Aus diesem Lemma kann man in Zusammenhang mit den oben erwähnten Konstruktionsmöglichkeiten folgern, dass die regelmäßigen
\mathl{3 \cdot 2^r}{-}Ecke, die regelmäßigen
\mathl{5 \cdot 2^r}{-}Ecke und die regelmäßigen
\mathl{15 \cdot 2^r}{-}Ecke für jedes $r$ konstruierbar sind. Wenn man die Zahl als
\mavergleichskettedisp
{\vergleichskette
{n }
{ =} { 2^r 3^{r_1} \cdots 5^{r_2} \cdot }
{ } { }
{ } { }
{ } { }
} {}{}{} schreibt, so wird mit dem Lemma die Konstruierbarkeit des $n$-Ecks auf die Konstruierbarkeit des regelmäßigen Ecks zu Prizmahlpotenzen zurückgeführt. Ein entscheidendes notwendiges Kriterium \zusatzklammer {das sich später auch als hinreichend erweist} {} {} für die Konstruierbarkeit wird im folgenden Satz formuliert.




\inputfaktbeweisnichtvorgefuehrt
{Zirkel und Lineal/Regelmäßiges n-Eck konstruierbar/Euler ist Zweierpotenz/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $n$ eine natürliche Zahl derart,}
\faktvoraussetzung {dass das regelmäßige $n$-Eck \definitionsverweis {konstruierbar}{}{} ist.}
\faktfolgerung {Dann ist
\mathl{{\varphi (n)}}{} eine Zweierpotenz.}
\faktzusatz {}
\faktzusatz {}

}
{

Die Voraussetzung besagt, dass die \definitionsverweis {primitive Einheitswurzel}{}{}
\mavergleichskette
{\vergleichskette
{ \zeta }
{ = }{ e^{ \frac{2 \pi { \mathrm i} } { n } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {konstruierbar}{}{} ist. Dann muss nach Korollar 26.7 der \definitionsverweis {Grad}{}{} des \definitionsverweis {Minimalpolynoms}{}{} von $\zeta$ eine Zweierpotenz sein. Nach Korollar 19.12 (Körper- und Galoistheorie (Osnabrück 2018-2019)) ist das Minimalpolynom von $\zeta$ das $n$-te \definitionsverweis {Kreisteilungspolynom}{}{,} und dieses hat den Grad
\mathl{{\varphi (n)}}{.} Also muss
\mathl{{\varphi (n)}}{} eine Zweierpotenz sein.

}

Der Beweis beruht darauf, dass der $n$-te Kreisteilungskörper den Grad
\mathl{\varphi(n)}{} besitzt und dass im konstruierbaren Fall der Grad einer Körpererweiterung eine Zweierpotenz sein muss.






\zwischenueberschrift{Winkeldreiteilung}

Wir sind nun in der Lage, das Problem der Winkeldreiteilung zu beantworten.




\inputfaktbeweis
{Zirkel und Lineal/Das regelmäßige 9-Eck ist nicht konstruierbar/Fakt}
{Korollar}
{}
{

\faktsituation {}
\faktvoraussetzung {Das regelmäßige $9$-Eck ist}
\faktfolgerung {nicht mit Zirkel und Lineal \definitionsverweis {konstruierbar}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Wäre das regelmäßige $9$-Eck konstruierbar, so müsste nach Satz 28.3
\mathl{{\varphi (9)}}{} eine Zweierpotenz sein. Es ist aber
\mavergleichskette
{\vergleichskette
{ {\varphi (9)} }
{ = }{2 \cdot 3 }
{ = }{6 }
{ }{ }
{ }{ }
} {}{}{.}

}





\inputfaktbeweis
{Zirkel und Lineal/Winkeldreiteilung/Fakt}
{Satz}
{}
{

\faktsituation {}
\faktfolgerung {Es ist nicht möglich, einen beliebig vorgegebenen Winkel mittels \definitionsverweis {Zirkel und Lineal}{}{} in drei gleich große Teile zu unterteilen.}
\faktzusatz {}
\faktzusatz {}

}
{

Es genügt, einen \zusatzklammer {konstruierbaren} {} {} Winkel $\alpha$ derart anzugeben, dass
\mathl{\alpha/3}{} nicht konstruierbar ist. Wir betrachten
\mavergleichskette
{\vergleichskette
{ \alpha }
{ = }{ 120^{\circ} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Grad, welcher konstruierbar ist, da die dritten Einheitswurzeln konstruierbar sind, weil sie nämlich in einer quadratischen Körpererweiterung von $\Q$ liegen. Dagegen ist der Winkel
\mavergleichskette
{\vergleichskette
{\alpha/3 }
{ = }{ 120^{\circ}/3 }
{ = }{ 40^{\circ} }
{ }{ }
{ }{ }
} {}{}{} nicht konstruierbar, da andernfalls das regelmäßige $9$-Eck konstruierbar wäre, was nach Korollar 28.4 aber nicht der Fall ist.

}


Wir geben noch einen weiteren Beweis, dass die Winkeldreiteilung mit Zirkel und Lineal nicht möglich ist, der nicht auf der allgemeinen Irreduzibilität der Kreisteilungspolynome\zusatzklammer {die wir nicht bewiesen haben} {} {} beruht.






\inputbemerkung
{}
{

Wir zeigen direkt, dass man den Winkel
\mathl{20^{\circ}}{} Grad nicht konstruieren kann \zusatzklammer {obwohl man
\mathl{60^{\circ}}{} Grad konstruieren kann} {} {.} Aufgrund der \stichwort {Additionstheoreme für die trigonometrischen Funktionen} {} gilt
\mavergleichskettedisp
{\vergleichskette
{ \cos 3 \alpha }
{ =} {4 \cos^3 \alpha -3 \cos \alpha }
{ } { }
{ } { }
{ } { }
} {}{}{} und damit
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{ (2 \cos 20^{\circ} )^3 - 3(2 \cos 20^{\circ}) -1 }
{ =} {2 { \left( 4 \cos^3 20^{\circ} - 3 \cos 20^{\circ} - { \frac{ 1 }{ 2 } } \right) } }
{ =} {2 { \left( \cos 60^{\circ} - { \frac{ 1 }{ 2 } } \right) } }
{ =} {0 }
{ } {}
} {} {}{.} Also wird
\mathl{2 \cos 20^{\circ}}{} vom Polynom
\mathl{X^3-3X-1}{} annulliert. Dieses Polynom ist nach Aufgabe 28.2 irreduzibel. Also muss es nach Lemma 23.2 das \definitionsverweis {Minimalpolynom}{}{} von
\mathl{2 \cos 20^{\circ}}{} sein. Daher kann
\mathl{2 \cos 20^{\circ}}{} nach Korollar 26.7 nicht konstruierbar sein und damit ebensowenig
\mathl{\cos 20^{\circ}}{.}

}






\zwischenueberschrift{Fermatsche Primzahlen}

Die Frage der Konstruierbarkeit von regelmäßigen $n$-Ecken führt uns zu Fermatschen Primzahlen.




\inputdefinition
{}
{

Eine \definitionsverweis {Primzahl}{}{} der Form
\mathl{2^{s}+1}{,} wobei $s$ eine positive \definitionsverweis {natürliche Zahl}{}{} ist, heißt \definitionswort {Fermatsche Primzahl}{.}

}

Es ist unbekannt, ob es unendlich viele Fermatsche Primzahlen gibt. Es ist noch nicht mal bekannt, ob es außer den ersten fünf Fermat-Zahlen
\mathdisp {3,5,17,257,65537} { }
überhaupt weitere Fermatsche Primzahlen gibt.





\inputfaktbeweis
{Fermatsche Primzahlen/Exponentenlemma/Fakt}
{Lemma}
{}
{

Bei einer \definitionsverweis {Fermatschen Primzahl}{}{}
\mathl{2^{s}+1}{} hat der Exponent die Form
\mavergleichskette
{\vergleichskette
{s }
{ = }{2^r }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit einem
\mavergleichskette
{\vergleichskette
{ r }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{

Wir schreiben
\mavergleichskette
{\vergleichskette
{s }
{ = }{ 2^k u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit $u$ ungerade. Damit ist
\mavergleichskettedisp
{\vergleichskette
{ 2^{2^ku}+1 }
{ =} { { \left( 2^{2^k} \right) }^{u} +1 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Für ungerades $u$ gilt generell die polynomiale Identität \zusatzklammer {da $-1$ eine Nullstelle ist} {} {}
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ X^{u}+1 }
{ =} {(X+1) { \left( X^{u-1}-X^{u-2}+X^{u-3}- \ldots + X^2 - X +1 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Also ist
\mavergleichskette
{\vergleichskette
{ 2^{2^k}+1 }
{ \geq }{ 3 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Teiler von
\mathl{2^{2^ku}+1}{.} Da diese Zahl nach Voraussetzung prim ist, müssen beide Zahlen gleich sein, und dies bedeutet
\mavergleichskette
{\vergleichskette
{u }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Pie_2.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Pie 2.svg } {} {Cronholm 144} {Commons} {CC-by-sa 3.0} {}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Cake_quarters.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Cake quarters.svg } {} {Acdx, R. S. Shaw} {Commons} {PD} {}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Luxembourg_Vianden_Nut-fair_10.jpg} }
\end{center}
\bildtext {Diese Torte wurde nicht mit Zirkel und Lineal geteilt.} }

\bildlizenz { Luxembourg Vianden Nut-fair 10.jpg } {} {PlayMistyForMe} {Commons} {CC-by-sa 3.0} {}


\inputfaktbeweis
{Konstruktionen Zirkel Lineal/Regelmäßige n-Ecke/Charakterisierung mit Fermatsche Primzahlen/Fakt}
{Satz}
{}
{

Ein reguläres $n$-Eck ist genau dann mit Zirkel und Lineal konstruierbar, wenn die Primfaktorzerlegung von $n$ die Gestalt
\mavergleichskettedisp
{\vergleichskette
{n }
{ =} {2^\alpha p_1 \cdots p_k }
{ } { }
{ } { }
{ } { }
} {}{}{} hat, wobei die $p_i$ verschiedene \definitionsverweis {Fermatsche Primzahlen}{}{} sind.

}
{\teilbeweis {Wir zeigen nur die eine Richtung, dass bei einem konstruierbaren regelmäßigen $n$-Eck die Zahl $n$ die angegebene numerische Bedingung erfüllen muss.\leerzeichen{}}{}{}
{Es sei
\mavergleichskette
{\vergleichskette
{n }
{ = }{ 2^{\alpha} p_1^{r_1} { \cdots } p_k^{r_k} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Primfaktorzerlegung von $n$ mit den verschiedenen ungeraden Primzahlen
\mathbed {p_i} {}
{i=1 , \ldots , k} {}
{} {} {} {,} und positiven Exponenten
\mavergleichskette
{\vergleichskette
{ r_i }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {und
\mavergleichskettek
{\vergleichskettek
{\alpha }
{ \geq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {.} Nach Satz 28.3 muss die eulersche Funktion eine Zweierpotenz sein, also
\mavergleichskettedisp
{\vergleichskette
{ {\varphi (n)} }
{ =} { 2^t }
{ } { }
{ } { }
{ } { }
} {}{}{.} Andererseits gilt nach Korollar 16.9 die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ {\varphi (n)} }
{ =} { 2^{\alpha-1} (p_1-1) p_1^{r_1-1} \cdots (p_k-1) p_k^{r_k-1} }
{ } { }
{ } { }
{ } { }
} {}{}{} \zusatzklammer {bei
\mavergleichskettek
{\vergleichskettek
{ \alpha }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist der Ausdruck $2^{\alpha-1}$ zu streichen} {} {.} Da dies eine Zweierpotenz sein muss, dürfen die ungeraden Primzahlen nur mit einem Exponenten $1$ \zusatzklammer {oder $0$} {} {} auftreten. Ferner muss jede beteiligte Primzahl $p$ die Gestalt
\mavergleichskette
{\vergleichskette
{p }
{ = }{ 2^s+1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} haben, also eine Fermatsche Primzahl sein.}
{} \teilbeweis {}{}{}
{Für die andere Richtung muss man aufgrund von Lemma 28.2 lediglich zeigen, dass für eine Fermatsche Primzahl $p$ das regelmäßige $p$-Eck \definitionsverweis {konstruierbar}{}{} ist. Dies haben wir für
\mathl{p=3,5}{} explizit getan. Gauss selbst hat eine Konstruktion für das reguläre $17$-Eck angegeben. Für die anderen Fermatschen Primzahlen \zusatzklammer {bekannt oder nicht} {} {}

folgt die Konstruierbarkeit aus der Galoistheorie.}
{}}