Die folgenden Definitionen wurden mit Kürzeln belegt und werden in Beweisen als Begründungen für Umformungen oder Folgerungen verwendet.
(WG1) Definition (Weg glatt): Ein Weg
γ
:
[
a
,
b
]
→
C
{\displaystyle \gamma :[a,b]\to \mathbb {C} }
heißt glatt, wenn dieser stetig differenzierbar ist.
(UT) Definition (Unterteilung): Sei
[
a
,
b
]
{\displaystyle [a,b]}
ein Intervall,
n
∈
N
{\displaystyle n\in \mathbb {N} }
und
a
=
u
0
<
…
<
u
n
=
b
{\displaystyle {a}={u}_{0}<{\ldots }<{u}_{n}={b}}
.
(
u
0
,
…
,
u
n
)
∈
R
n
+
1
{\displaystyle {\left({u}_{0},\ldots ,{u}_{n}\right)}\in \mathbb {R} ^{n+1}}
heißt dann Unterteilung von
[
a
,
b
]
{\displaystyle {\left[{a},{b}\right]}}
.
(WG2) Definition (Wegunterteilung): Sei
γ
:
[
a
,
b
]
→
C
{\displaystyle \gamma :[a,b]\to \mathbb {C} }
ein Weg in
U
⊆
C
{\displaystyle {U}\subseteq \mathbb {C} }
,
n
∈
N
{\displaystyle {n}\in \mathbb {N} }
,
(
u
0
,
…
,
u
n
)
{\displaystyle {\left({u}_{0},\ldots ,{u}_{n}\right)}}
eine Unterteilung von
[
a
,
b
]
{\displaystyle [a,b]}
,
γ
k
:
[
u
k
−
1
,
u
k
]
→
C
{\displaystyle \gamma _{k}:{\left[{u}_{{k}-{1}},{u}_{k}\right]}\to \mathbb {C} }
für alle
k
∈
{
1
,
…
,
n
}
{\displaystyle {k}\in {\left\lbrace {1},\ldots ,{n}\right\rbrace }}
ein Weg in
U
{\displaystyle {U}}
.
(
γ
1
,
…
,
γ
n
)
{\displaystyle {\left(\gamma _{1},\ldots ,\gamma _{n}\right)}}
heißt Wegunterteilung von
γ
{\displaystyle \gamma }
, wenn gilt
γ
n
(
b
)
=
γ
(
b
)
{\displaystyle \gamma _{n}{\left({b}\right)}=\gamma {\left({b}\right)}}
und
∀
k
∈
{
1
,
…
,
n
}
∀
t
∈
[
u
k
−
1
,
u
k
)
:
γ
k
(
t
)
=
γ
(
t
)
∧
γ
k
(
u
k
−
1
)
=
γ
k
−
1
(
u
k
)
{\displaystyle \forall _{{k}\in {\left\lbrace {1},\ldots ,{n}\right\rbrace }}\forall _{{t}\in {\left[{u}_{{k}-{1}},{u}_{k}\right)}}:\gamma _{k}{\left({t}\right)}=\gamma {\left({t}\right)}\wedge \gamma _{k}{\left({u}_{{k}-{1}}\right)}=\gamma _{{k}-{1}}{\left({u}_{k}\right)}}
.
(WG3) Definition (Weg stückweise glatt): Ein Weg
γ
:
[
a
,
b
]
→
C
{\displaystyle \gamma :{\left[{a},{b}\right]}\to \mathbb {C} }
heißt stückweise glatt, wenn eine Wegunterteilung
(
γ
1
,
…
γ
n
)
{\displaystyle {\left(\gamma _{1},\ldots \gamma _{n}\right)}}
aus glatten Wegen
γ
k
{\displaystyle \gamma _{k}}
für alle
k
∈
{
1
,
…
,
n
}
{\displaystyle {k}\in {\left\lbrace {1},\ldots ,{n}\right\rbrace }}
existiert.
(WG4) Definition (Wegintegral): Sei
f
:
U
→
C
{\displaystyle f:U\to \mathbb {C} }
eine stetige Funktion und
γ
:
[
a
,
b
]
→
U
{\displaystyle \gamma :[a,b]\to U}
ein glatter Weg, dann ist das Wegintegral wie folgt definiert:
∫
γ
f
:=
∫
γ
f
(
z
)
d
z
:=
∫
a
b
f
(
γ
(
t
)
)
⋅
γ
′
(
t
)
d
t
{\displaystyle \int _{\gamma }f:=\int _{\gamma }f(z)\,dz:=\int _{a}^{b}f(\gamma (t))\cdot \gamma '(t)\,dt}
. Ist
γ
{\displaystyle \gamma }
nur stückweise glatt bzgl. einer Wegunterteilung
(
γ
1
,
…
,
γ
n
)
{\displaystyle (\gamma _{1},\ldots ,\gamma _{n})}
, dann definiert man
∫
γ
f
(
z
)
d
z
:=
∑
k
=
1
n
∫
γ
k
f
(
z
)
d
z
{\displaystyle \int _{\gamma }f(z)\,dz:=\sum _{k=1}^{n}\int _{\gamma _{k}}f(z)\,dz}
.
Definition (Integrationsweg): Ein Integrationsweg ist ein stückweise glatter (stückweise stetig differenzierbarer) Weg.
Integrationsweg auf dem Dreiecksrand
Der folgende Weg ist stückweise stetig differenzierbar (glatt) und für die Ecken
z
1
,
z
2
,
z
3
∈
Spur
(
γ
)
{\displaystyle z_{1},z_{2},z_{3}\in {\text{Spur}}(\gamma )}
ist der geschlossene Dreiecksweg
γ
:
[
0
,
3
]
→
C
{\displaystyle \gamma :[0,3]\to \mathbb {C} }
nicht differenzierbar. Der Dreiecksweg ist auf dem Intervall
[
0
,
3
]
{\displaystyle [0,3]}
wie folgt definiert:
γ
(
t
)
:=
⟨
z
1
,
z
2
,
z
3
⟩
(
t
)
:=
{
(
1
−
t
)
⋅
z
1
+
t
⋅
z
2
für
t
∈
[
0
,
1
]
(
2
−
t
)
⋅
z
2
+
(
t
−
1
)
⋅
z
3
für
t
∈
(
1
,
2
]
(
3
−
t
)
⋅
z
3
+
(
t
−
2
)
⋅
z
1
für
t
∈
(
2
,
3
]
{\displaystyle \gamma (t):=\left\langle z_{1},z_{2},z_{3}\right\rangle (t):={\begin{cases}(1-t)\cdot z_{1}+t\cdot z_{2}&{\text{für }}t\in [0,1]\\(2-t)\cdot z_{2}+(t-1)\cdot z_{3}&{\text{für }}t\in (1,2]\\(3-t)\cdot z_{3}+(t-2)\cdot z_{1}&{\text{für }}t\in (2,3]\\\end{cases}}}
Der stückweise stetig differenzierbare Weg ist aus Konvexkombinationen entstanden.
Die Teilwege
γ
1
:=
⟨
z
1
,
z
2
⟩
{\displaystyle \gamma _{1}:=\left\langle z_{1},z_{2}\right\rangle }
mit
γ
1
:
[
0
,
1
]
→
C
,
(
1
−
t
)
⋅
z
1
+
t
⋅
z
2
{\displaystyle \gamma _{1}:[0,1]\to \mathbb {C} ,\ (1-t)\cdot z_{1}+t\cdot z_{2}}
γ
2
:=
⟨
z
2
,
z
3
⟩
{\displaystyle \gamma _{2}:=\left\langle z_{2},z_{3}\right\rangle }
mit
γ
2
:
[
1
,
2
]
→
C
,
(
2
−
t
)
⋅
z
2
+
(
t
−
1
)
⋅
z
3
{\displaystyle \gamma _{2}:[1,2]\to \mathbb {C} ,\ (2-t)\cdot z_{2}+(t-1)\cdot z_{3}}
γ
3
:=
⟨
z
3
,
z
1
⟩
{\displaystyle \gamma _{3}:=\left\langle z_{3},z_{1}\right\rangle }
mit
γ
3
:
[
2
,
3
]
→
C
,
(
3
−
t
)
⋅
z
3
+
(
t
−
2
)
⋅
z
1
{\displaystyle \gamma _{3}:[2,3]\to \mathbb {C} ,\ (3-t)\cdot z_{3}+(t-2)\cdot z_{1}}
sind stetig differenzierbar.