Kurs:Grundkurs Mathematik (Osnabrück 2018-2019)/Teil II/Arbeitsblatt 50/latex
\setcounter{section}{50}
\zwischenueberschrift{Die Pausenaufgabe}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Wie lautet das Ergebnis der Division mit Rest, wenn man ein Polynom $P$ durch $X^m$ teilt?
}
{} {}
\zwischenueberschrift{Übungsaufgaben}
\inputaufgabe
{}
{
Setze in das Polynom
\mathl{2X^3 - { \frac{ 1 }{ 4 } } X^2 + { \frac{ 2 }{ 5 } }X + { \frac{ 3 }{ 4 } }}{} die Zahl ${ \frac{ 2 }{ 3 } }$ ein.
}
{} {}
\inputaufgabe
{}
{
Setze in das Polynom
\mathl{2X^4 +X^3 - 3 X^2 + X + 5}{} die Zahl $\sqrt{2}$ ein.
}
{} {}
\inputaufgabe
{}
{
Schreibe das
\definitionsverweis {Polynom}{}{}
\mathdisp {X^3+2X^2-3X+4} { }
in der neuen Variablen
\mavergleichskette
{\vergleichskette
{ U
}
{ = }{ X+2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{}
{
\aufzaehlungzwei {Berechne das Produkt
\mathdisp {{ \left( 2-3X+X^2 \right) } \cdot { \left( -5+4X-3 X^2 \right) }} { }
im
\definitionsverweis {Polynomring}{}{}
$\Q[X]$.
} {Berechne das Produkt
\mathdisp {{ \left( 2-3 \sqrt{2} +\sqrt{2}^2 \right) } \cdot { \left( -5+4\sqrt{2}-3 \sqrt{2}^2 \right) }} { }
in $\R$ auf zwei verschiedene Arten.
}
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{a
}
{ \in }{K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein fixiertes Element. Bestimme den
\definitionsverweis {Kern}{}{}
des
\definitionsverweis {Einsetzungshomomorphismus}{}{}
\maabbeledisp {} {K[X]} {K
} {X} {a
} {.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Man gebe ein Polynom
\mavergleichskette
{\vergleichskette
{ P
}
{ \in }{ \Q[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
an, das nicht zu
\mathl{\Z[X]}{} gehört, aber die Eigenschaft besitzt, dass für jede ganze Zahl $n$ gilt:
\mavergleichskette
{\vergleichskette
{ P(n)
}
{ \in }{ \Z
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Bestimme die
\definitionsverweis {Hintereinanderschaltungen}{}{}
\mathkor {} {\varphi \circ \psi} {und} {\psi \circ \varphi} {}
für die
\definitionsverweis {Abbildungen}{}{}
\maabb {\varphi,\psi} {\R} {\R
} {,}
die durch
\mathdisp {\varphi(x)=x^3+3x^2-4 \text{ und } \psi(x)=x^2+5x-3} { }
definiert sind.
}
{} {}
\inputaufgabe
{}
{
Bestimme die
\definitionsverweis {Hintereinanderschaltungen}{}{}
\mathkor {} {\varphi \circ \psi} {und} {\psi \circ \varphi} {}
für die
\definitionsverweis {Abbildungen}{}{}
\maabb {\varphi,\psi} {\R} {\R
} {,}
die durch
\mathdisp {\varphi(x)=x^4+3x^2-2x+5 \text{ und } \psi(x)=2x^3-x^2+6x-1} { }
definiert sind.
}
{} {}
\inputaufgabe
{}
{
Zeige, dass die Hintereinanderschaltung \zusatzklammer {also das Einsetzen eines Polynoms in ein weiteres} {} {} von zwei Polynomen wieder ein Polynom ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es seien
\maabbdisp {f,g,h} {\R} {\R
} {}
Funktionen.
a) Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ { \left( h \cdot g \right) } \circ f
}
{ =} { { \left( h \circ f \right) } \cdot { \left( g \circ f \right) }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
b) Zeige durch ein Beispiel, dass die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ { \left( h \circ g \right) } \cdot f
}
{ =} { { \left( h \cdot f \right) } \circ { \left( g \cdot f \right) }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
nicht gelten muss.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und es sei $P(x) = \sum_{ i = 0 }^{ d } a_{ i } x^{ i}$ eine
\definitionsverweis {Polynomfunktion}{}{.}
Es sei ${ \left( x_n \right) }_{n \in \N }$ eine
\definitionsverweis {konvergente Folge}{}{}
in $K$ mit Grenzwert $x$. Zeige durch Induktion über $d$, dass dann auch die durch
\mavergleichskettedisp
{\vergleichskette
{ y_n
}
{ \defeq} { P(x_n)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
definierte Folge konvergiert, und zwar gegen $P(x)$.
}
{} {}
\inputaufgabe
{}
{
a) Für welche reellen Polynome
\mavergleichskette
{\vergleichskette
{ P
}
{ \in }{ \R[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist die zugehörige polynomiale Abbildung
\maabbeledisp {} {(\R,0,+)} {(\R,0,+)
} {x} { P(x)
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{?}
b) Für welche reellen Polynome
\mavergleichskette
{\vergleichskette
{ Q
}
{ \in }{ \R[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist allenfalls $0$ eine Nullstelle und die zugehörige polynomiale Abbildung
\maabbeledisp {} { (\R^{\times}, 1, \cdot) } {(\R^{\times}, 1, \cdot)
} {x} {Q(x)
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{?}
}
{} {}
\inputaufgabe
{}
{
Führe in $\Q[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=3X^4+7X^2-2X+5} {und} {T=2X^2+3X-1} {} durch.
}
{} {}
\inputaufgabegibtloesung
{}
{
Führe in $\Z/(5)[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=X^3+4X^2+3X+4} {und} {T=3X^2+2X+1} {} durch.
}
{} {}
\inputaufgabe
{}
{
Führe in
\mathl{\Z/(7) [X]}{} folgende Polynomdivision aus.
\mathdisp {X^4+5X^2+ 3 \, \text{ durch } \, 2X^2+X+6} { . }
}
{} {}
\inputaufgabe
{}
{
Führe in $\Z/(7)[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=5X^4+3X^3+5X^2+3X+6} {und} {T=3X^2+6X+4} {} durch.
}
{} {}
\inputaufgabe
{}
{
Es sei
\mavergleichskette
{\vergleichskette
{ K
}
{ \subseteq }{ L
}
{ }{
}
{ }{}
{ }{}
}
{}{}{}
eine
\definitionsverweis {Körpererweiterung}{}{}
und seien
\mavergleichskette
{\vergleichskette
{ P,T
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
\definitionsverweis {Polynome}{}{.}
Zeige, dass es für die
\definitionsverweis {Division mit Rest}{}{}
\anfuehrung{$P$ durch $T$}{} unerheblich ist, ob man sie in
\mathl{K[X]}{} oder in
\mathl{L[X]}{} durchführt.
}
{} {}
\inputaufgabe
{}
{
Vergleiche die Division mit Rest in $\Z$ und in
\mathl{K[X]}{}
\zusatzklammer {$K$ ein Körper} {} {.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{z
}
{ =} { \sqrt[3]{-1 + \sqrt{2} } + \sqrt[3]{-1 - \sqrt{2} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
eine Nullstelle des Polynoms
\mathdisp {X^3+3X+2} { }
ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} {X^3+bX^2+cX+d
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein normiertes Polynom über einem Körper $K$. Es seien
\mathl{u,v,w}{} drei
\zusatzklammer {verschiedene} {} {}
Zahlen aus $K$. Zeige, dass diese drei Zahlen genau dann Nullstellen von $P$ sind, wenn sie das Gleichungssystem
\mavergleichskettedisp
{\vergleichskette
{ uvw
}
{ =} {-d
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
\mavergleichskettedisp
{\vergleichskette
{ uv+uw+vw
}
{ =} {c
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
\mavergleichskettedisp
{\vergleichskette
{ u+v+w
}
{ =} {-b
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
erfüllen.
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme die $x$-Koordinaten der Schnittpunkte der Graphen der beiden reellen Polynome
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} {X^3+4X^2-7X+1
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{Q
}
{ =} {X^3-2X^2+5X+3
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Zeige, dass jedes Polynom
\mathbed {P \in K[X]} {}
{P \neq 0} {}
{} {} {} {,}
eine Produktzerlegung
\mavergleichskettedisp
{\vergleichskette
{ P
}
{ =} { (X- \lambda_1)^{\mu_1} \cdots (X- \lambda_k)^{\mu_k} \cdot Q
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{ \mu_j
}
{ \geq }{ 1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und einem nullstellenfreien Polynom $Q$ besitzt, wobei die auftretenden verschiedenen Zahlen
\mathl{\lambda_1 , \ldots , \lambda_k}{} und die zugehörigen Exponenten
\mathl{\mu_1 , \ldots , \mu_k}{} bis auf die Reihenfolge eindeutig bestimmt sind.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$ und sei
\mavergleichskette
{\vergleichskette
{ P
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein Polynom, das eine Zerlegung in Linearfaktoren besitze. Es sei $T$ ein
\definitionsverweis {Teiler}{}{}
von $P$. Zeige, dass $T$ ebenfalls eine Zerlegung in Linearfaktoren besitzt, wobei die Vielfachheit eines Linearfaktors
\mathl{X-a}{} in $T$ durch seine Vielfachheit in $P$ beschränkt ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es seien \mathkor {} {P} {und} {Q} {} verschiedene \definitionsverweis {normierte Polynome}{}{} vom Grad $d$ über einem Körper $K$. Wie viele Schnittpunkte besitzen die beiden Graphen maximal?
}
{} {}
\inputaufgabegibtloesung
{}
{
Man finde ein
\definitionsverweis {Polynom}{}{}
\mavergleichskettedisp
{\vergleichskette
{ f
}
{ =} { a+bX+cX^2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{ a,b,c
}
{ \in }{ \R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
derart, dass die folgenden Bedingungen erfüllt werden.
\mathdisp {f(-1) =2,\, f(1) = 0,\, f(3) = 5} { . }
}
{} {}
\inputaufgabe
{}
{
Man finde ein
\definitionsverweis {Polynom}{}{}
\mavergleichskettedisp
{\vergleichskette
{ f
}
{ =} { a+bX+cX^2+dX^3
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{ a,b,c,d
}
{ \in }{ \R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
derart, dass die folgenden Bedingungen erfüllt werden.
\mathdisp {f(0) =1,\, f(1) = 2,\, f(2) = 0, \, f(-1) = 1} { . }
}
{} {}
\inputaufgabegibtloesung
{}
{
\aufzaehlungdrei{Bestimme ein Polynom $P$ vom Grad $\leq 3$ mit
\mavergleichskettedisp
{\vergleichskette
{P(-1)
}
{ =} {-4
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
\mavergleichskettedisp
{\vergleichskette
{P(0)
}
{ =} {2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
\mavergleichskettedisp
{\vergleichskette
{P(1)
}
{ =} {2
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{P(2)
}
{ =} {3
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
}{Bestimme ein normiertes Polynom $Q$ vom Grad $3$ mit
\mavergleichskettedisp
{\vergleichskette
{Q(0)
}
{ =} {1
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
\mavergleichskettedisp
{\vergleichskette
{Q(2)
}
{ =} {3
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{Q(3)
}
{ =} { 10
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}{Bestimme die Schnittpunkte der Graphen zu $P$ und zu $Q$.
}
}
{} {}
\inputaufgabe
{}
{
Es sei
\mathl{K[X]}{} der
\definitionsverweis {Polynomring}{}{}
über einem Körper
\mathl{K}{.} Zeige, dass die Menge
\mathdisp {{ \left\{ { \frac{ P }{ Q } } \mid P,Q \in K[X] , \, Q \neq 0 \right\} }} { , }
wobei zwei Brüche
\mathl{{ \frac{ P }{ Q } }}{} und
\mathl{{ \frac{ P' }{ Q' } }}{} genau dann als gleich gelten, wenn
\mavergleichskette
{\vergleichskette
{ P Q'
}
{ = }{ P' Q
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist, mit einer geeigneten Addition und Multiplikation ein Körper ist.
}
{} {}
Den in der vorstehenden Aufgabe eingeführten Körper nennt man den \stichwort {Körper der rationalen Funktionen} {.}
\inputaufgabe
{}
{
Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{,} $K[X]$ der
\definitionsverweis {Polynomring}{}{}
und
\mathdisp {Q=K(X)} { }
der
\definitionsverweis {Körper der rationalen Funktionen}{}{}
über $K$. Zeige unter Verwendung von
Aufgabe 49.8,
dass man $Q$ zu einem angeordneten Körper machen kann, der
\betonung{nicht}{}
\definitionsverweis {archimedisch angeordnet}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Zeige, dass die \definitionsverweis {Hintereinanderschaltung}{}{} von zwei \definitionsverweis {rationalen Funktionen}{}{} wieder rational ist.
}
{} {}
\inputaufgabe
{}
{
Berechne die
\definitionsverweis {Hintereinanderschaltungen}{}{}
\mathkor {} {f \circ g} {und} {g \circ f} {}
der beiden
\definitionsverweis {rationalen Funktionen}{}{}
\mathdisp {f(x)= { \frac{ 2x^2-4x+3 }{ x-2 } } \text{ und } g(x)= { \frac{ x+1 }{ x^2-4 } }} { . }
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein \definitionsverweis {archimedisch angeordneter Körper}{}{} und seien
\mathkor {} {P(x) = \sum_{ i = 0 }^{ d } a_{ i } x^{ i}} {und} {Q(x) = \sum_{ i = 0 }^{ e } b_{ i } x^{ i}} {} \definitionsverweis {Polynome}{}{} mit $a_d, b_e \neq 0$.
Man bestimme in Abhängigkeit von
\mathkor {} {d} {und} {e} {,} ob die durch
\mathdisp {z_n = \frac{P(n)}{Q(n)}} { }
\zusatzklammer {für $n$ hinreichend groß} {} {} definierte \definitionsverweis {Folge}{}{}
\definitionsverweis {konvergiert}{}{} oder nicht, und bestimme gegebenenfalls den Grenzwert.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{3 (1+2)}
{
\aufzaehlungzwei {Berechne das Produkt
\mathdisp {{ \left( 1-{ \frac{ 5 }{ 3 } } X+ { \frac{ 1 }{ 2 } } X^2 \right) } \cdot { \left( 2-{ \frac{ 3 }{ 4 } } X+ { \frac{ 1 }{ 3 } } X^2 -X^3 \right) }} { }
im
\definitionsverweis {Polynomring}{}{}
$\Q[X]$.
} {Berechne das Produkt
\mathdisp {{ \left( 1-{ \frac{ 5 }{ 3 } } \sqrt{5} + { \frac{ 1 }{ 2 } } \sqrt{5}^2 \right) } \cdot { \left( 2-{ \frac{ 3 }{ 4 } } \sqrt{5}+ { \frac{ 1 }{ 3 } } \sqrt{5}^2 -\sqrt{5}^3 \right) }} { }
in $\R$ auf zwei verschiedene Arten.
}
}
{} {}
\inputaufgabe
{3}
{
Führe in $\Q[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=5X^4-6X^3 + { \frac{ 3 }{ 5 } }X^2 -{ \frac{ 1 }{ 2 } } X+5} {und} {T={ \frac{ 1 }{ 7 } } X^2+{ \frac{ 3 }{ 7 } } X-1} {} durch.
}
{} {}
\inputaufgabe
{3}
{
Führe in $\Z/(7)[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=6X^4+2X^3+4X^2+2X+5} {und} {T=5X^2+3X+2} {} durch.
}
{} {}
\inputaufgabe
{2}
{
Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ X^{u}+1
}
{ =} {(X+1) { \left( X^{u-1}-X^{u-2}+X^{u-3}- \cdots + X^2 - X +1 \right) }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
für $u$ ungerade.
}
{} {}
\inputaufgabe
{4}
{
Man finde ein
\definitionsverweis {Polynom}{}{}
$f$ vom Grad
\mathl{\leq 3}{,} für welches
\mathdisp {f(0)=-1,\, f(-1) =-3,\, f(1) = 7,\, f(2) = 21} { }
gilt.
}
{} {}
<< | Kurs:Grundkurs Mathematik (Osnabrück 2018-2019)/Teil II | >> |
---|