Kurs:Körper- und Galoistheorie (Osnabrück 2011)/Arbeitsblatt 8/latex

\setcounter{section}{8}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabe
{}
{

Zeige, dass die Menge der \definitionsverweis {algebraischen Zahlen}{}{} $\mathbb A$ keine \definitionsverweis {endliche Körpererweiterung}{}{} von $\Q$ ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass es nur \definitionsverweis {abzählbar}{}{} viele \definitionsverweis {algebraische Zahlen}{}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es seien
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ L }
{ }{ }
{ }{}
{ }{}
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ L }
{ \subseteq }{ M }
{ }{ }
{ }{}
{ }{}
} {}{}{} \definitionsverweis {algebraische Körpererweiterungen}{}{.} Zeige, dass dann auch
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ M }
{ }{ }
{ }{}
{ }{}
} {}{}{} eine algebraische Körpererweiterung ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{.} Zeige, dass es außer $K$ keine \definitionsverweis {endliche}{}{} $K$-\definitionsverweis {Unteralgebra}{}{}
\mathl{A \subseteq K[X]}{} gibt.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {kommutativer Ring}{}{} und $A$ eine \definitionsverweis {kommutative}{}{} $K$-Algebra. Beweise die folgenden Aussagen. \aufzaehlungvier{Die Identität ist ein $K$-\definitionsverweis {Algebraautomorphismus}{}{.} }{Die Verknüpfung
\mathl{\varphi \circ \psi}{} von zwei $K$-Algebraautomorphismen \mathkor {} {\varphi} {und} {\psi} {} ist wieder ein Automorphismus. }{Die \definitionsverweis {Umkehrabbildung}{}{} $\varphi^{-1}$ zu einem $K$-Algebraautomorphismus $\varphi$ ist wieder ein Automorphismus. }{Die Menge der $K$-Algebraautomorphismen bilden mit der \definitionsverweis {Hintereinanderschaltung}{}{} als Verknüpfung eine \definitionsverweis {Gruppe}{}{.} }

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} der Charakteristik $\neq 2$ und sei
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ L }
{ }{ }
{ }{}
{ }{}
} {}{}{} eine \definitionsverweis {quadratische Körpererweiterung}{}{.} Zeige, dass es neben der Identität einen weiteren $K$-\definitionsverweis {Algebraautomorphismus}{}{} \maabb {} {L} {L } {} gibt.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Zeige, dass ein Polynom
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} genau dann \definitionsverweis {irreduzibel}{}{} ist, wenn das um
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \anfuehrung{verschobene}{} Polynom \zusatzklammer {das entsteht, wenn man in $P$ die Variable $X$ durch
\mathl{X-a}{} ersetzt} {} {} irreduzibel ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mathl{x=\sqrt{2} + \sqrt{5} \in \R}{} und betrachte die Körpererweiterung
\mathdisp {\Q \subseteq \Q (x)= L} { . }
Zeige, dass diese Körpererweiterung algebraisch ist und bestimme den Grad der Körpererweiterung, das Minimalpolynom von $x$ und das Inverse von $x$. (Man darf dabei verwenden, dass
\mathl{\sqrt{2}, \sqrt{5}, \sqrt{10}}{} irrationale Zahlen sind.)

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {Körpererweiterung}{}{} und es sei
\mathbed {x_i \in L} {}
{i \in I} {}
{} {} {} {,} ein \definitionsverweis {Körper-Erzeugendensystem}{}{} \zusatzklammer {als Körper} {} {} von $L$ über $K$. Es seien
\mathl{\varphi, \psi \in \operatorname{Gal}\, ( L {{|}} K )}{} mit
\mathl{\varphi(x_i)= \psi(x_i)}{} für alle
\mathl{i \in I}{.} Zeige, dass
\mathl{\varphi = \psi}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mathbed {z=a+b { \mathrm i} \in {\mathbb C}} {}
{a,b \in \R} {}
{} {} {} {,} eine \definitionsverweis {algebraische Zahl}{}{.} Zeige, dass auch die konjugiert-komplexe Zahl
\mavergleichskette
{\vergleichskette
{ \overline{ z } }
{ = }{ a-b { \mathrm i} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sowie der Real- und der Imaginärteil von $z$ algebraisch sind. Man bestimme den \definitionsverweis {Grad}{}{} der \definitionsverweis {Körpererweiterung}{}{}
\mavergleichskettedisp
{\vergleichskette
{ {\mathbb A} \cap \R }
{ \subseteq} { {\mathbb A} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {Körpererweiterung}{}{} und sei
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Element. Zeige: $f$ ist genau dann \definitionsverweis {algebraisch}{}{} über $K$, wenn
\mavergleichskette
{\vergleichskette
{ K[f] }
{ = }{ K(f) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Bestimme das Inverse von
\mathl{2x^2+3x-1}{} im Körper
\mathl{\Q[X]/(X^3-5)}{} \zusatzklammer {$x$ bezeichnet die Restklasse von $X$} {} {.}

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ L }
{ }{ }
{ }{}
{ }{}
} {}{}{} eine \definitionsverweis {Körpererweiterung}{}{,} wobei $L$ \definitionsverweis {algebraisch abgeschlossen}{}{} sei. Zeige, dass auch der \definitionsverweis {algebraische Abschluss}{}{}
\mathl{\overline{K}}{} von $K$ in $L$ algebraisch abgeschlossen ist\zusatzfussnote {Die Bezeichnungen wären natürlich schlecht gewählt, wenn dies nicht gelten würde} {.} {.}

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X,Y]}{} der \definitionsverweis {Polynomring}{}{} über $K$ in zwei Variablen. Es sei
\mathl{P \in K[X]}{} ein Polynom in der einen Variablen $X$. Zeige, dass durch die \definitionsverweis {Einsetzung}{}{}
\mathl{X \mapsto X}{} und
\mathl{Y \mapsto Y+ P(X)}{} ein $K$-\definitionsverweis {Algebraautomorphismus}{}{} von
\mathl{K[X,Y]}{} in sich definiert wird, der im Allgemeinen nicht linear ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mavergleichskette
{\vergleichskette
{ L }
{ = }{ K(X) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der \definitionsverweis {rationale Funktionenkörper}{}{} über $K$. Zeige, dass es zu jedem
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} einen \definitionsverweis {Ringhomomorphismus}{}{} \maabb {\varphi} {L} {L } {} derart gibt, dass
\mavergleichskette
{\vergleichskette
{ L }
{ \cong }{ \varphi(L) }
{ \subseteq }{L }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {endliche Körpererweiterung}{}{} vom \definitionsverweis {Grad}{}{} $n$ ist.

}
{} {}



<< | Kurs:Körper- und Galoistheorie (Osnabrück 2011) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)