Kurs:Lineare Algebra/Teil I/34/Klausur
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 2 | 4 | 6 | 1 | 2 | 6 | 0 | 0 | 0 | 2 | 7 | 4 | 3 | 0 | 0 | 4 | 47 |
Aufgabe * (3 Punkte)
Definiere die folgenden (kursiv gedruckten) Begriffe.
- Eine Teilmenge einer Menge .
- Eine -Matrix über einem Körper .
- Eine Zerlegung eines - Vektorraumes als direkte Summe in die Untervektorräume .
- Die Determinante einer - Matrix .
- Eine trigonalisierbare lineare Abbildung , wobei ein endlichdimensionaler - Vektorraum ist.
- Die Dimension eines affinen Raumes .
Aufgabe * (3 Punkte)
Formuliere die folgenden Sätze.
- Der Charakterisierungssatz für eine Basis in einem - Vektorraum .
- Das Injektivitätskriterium für eine lineare Abbildung.
- Der Satz über Eigenvektoren zu paarweise verschiedenen Eigenwerten.
Aufgabe * (2 Punkte)
Ein Mann steht mit einem Wolf, einer Ziege und einem Kohl am Ufer eines Flusses und möchte diesen überqueren. Es steht ein Boot zur Verfügung, in dem neben ihm nur ein weiterer Passagier Platz hat. Wie kann er den Fluss überqueren, ohne dass dabei der Wolf die Ziege oder die Ziege den Kohl frisst?
Aufgabe * (4 (0.5+0.5+1+1+1) Punkte)
Wir betrachten die Verknüpfung
die einem Paar diejenige Zahl zuordnet, die entsteht, wenn man im Zehnersystem die Zahl -fach hintereinander schreibt.
- Bestimme .
- Bestimme .
- Ist die Verknüpfung kommutativ?
- Ist die Verknüpfung assoziativ?
- Besitzt die Verknüpfung ein neutrales Element?
Aufgabe * (6 (1+1+4) Punkte)
- Skizziere vier Geraden im Raum mit der Eigenschaft, dass es insgesamt zwei Schnittpunkte gibt.
- Skizziere vier Geraden in der Ebene mit der Eigenschaft, dass es insgesamt drei Schnittpunkte gibt.
- Zeige, dass es in der Ebene nicht vier Geraden geben kann, die insgesamt zwei Schnittpunkte besitzen.
Aufgabe * (1 Punkt)
Bei einem linearen Gleichungssystem führe das Eliminationsverfahren auf die Gleichung
Welche Folgerung kann man daraus schließen?
Aufgabe * (2 Punkte)
Bestimme die Punktrichtungsform für die durch die Gleichung
im gegebene Gerade.
Aufgabe * (6 Punkte)
Beweise den Satz, dass die Zuordnung zwischen linearen Abbildungen und Matrizen (bei gegebenen Basen) bijektiv ist.
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe * (2 Punkte)
Berechne das Quadrat des Polynoms
Aufgabe * (7 Punkte)
Beweise den Satz über die Division mit Rest im Polynomring über einem Körper .
Aufgabe * (4 Punkte)
Forme die Gleichung
in eine äquivalente Gleichung der Form
mit um.
Aufgabe * (3 Punkte)
Es sei ein Körper und es sei ein endlichdimensionaler - Vektorraum. Es sei
eine lineare Abbildung. Zeige, dass es maximal viele Eigenwerte zu gibt.
Aufgabe (0 Punkte)
Aufgabe (0 Punkte)
Aufgabe * (4 Punkte)
Finde eine affine Basis für die Lösungsmenge der inhomogenen Gleichung