Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Vorlesung 11/latex

\setcounter{section}{11}






\zwischenueberschrift{Untervektorräume unter linearen Abbildungen}

Eine typische und wohl auch namensgebende Eigenschaft einer linearen Abbildung ist, dass sie Geraden wieder auf Geraden \zusatzklammer {oder Punkte} {} {} abbildet. Allgemeiner ist folgende Aussage.

\inputfaktbeweis
{Lineare Abbildung/Bild und Urbild/Untervektorräume/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.}}
\faktuebergang {Dann gelten folgende Aussagen.}
\faktfolgerung {\aufzaehlungvier{Für einen \definitionsverweis {Untervektorraum}{}{}
\mavergleichskette
{\vergleichskette
{ S }
{ \subseteq }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist auch das \definitionsverweis {Bild}{}{}
\mathl{\varphi(S) ={ \left\{ \varphi(v) \mid v \in S \right\} }}{} ein Untervektorraum von $W$. }{Insbesondere ist das Bild
\mavergleichskette
{\vergleichskette
{ \operatorname{bild} \varphi }
{ = }{ \varphi(V) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der Abbildung ein Untervektorraum von $W$. }{Für einen Untervektorraum
\mavergleichskette
{\vergleichskette
{ T }
{ \subseteq }{ W }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist das \definitionsverweis {Urbild}{}{}
\mathl{\varphi^{-1}(T) ={ \left\{ v \in V \mid \varphi(v) \in T \right\} }}{} ein Untervektorraum von $V$. }{Insbesondere ist
\mathl{\varphi^{-1}(0)}{} ein Untervektorraum von $V$. }}
\faktzusatz {}
\faktzusatz {}

}
{ Siehe Aufgabe 11.2. }





\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.} Dann nennt man
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{kern} \varphi }
{ \defeq} { \varphi^{-1}(0) }
{ =} { { \left\{ v \in V \mid \varphi(v) = 0 \right\} } }
{ } { }
{ } { }
} {}{}{} den \definitionswort {Kern}{} von $\varphi$.

}

Der Kern ist also nach der obigen Aussage ein Untervektorraum von $V$.

Wichtig ist das folgende \stichwort {Injektivitätskriterium} {.}




\inputfaktbeweis
{Lineare Abbildung/Kern/Injektivität/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.}}
\faktfolgerung {Dann ist $\varphi$ genau dann \definitionsverweis {injektiv}{}{,} wenn
\mavergleichskette
{\vergleichskette
{ \operatorname{kern} \varphi }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {}{}{}
{Wenn die Abbildung injektiv ist, so kann es neben
\mavergleichskette
{\vergleichskette
{0 }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} keinen weiteren Vektor
\mavergleichskette
{\vergleichskette
{v }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \varphi(v) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} geben. Also ist
\mavergleichskette
{\vergleichskette
{ \varphi^{-1}(0) }
{ = }{ \{ 0 \} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
{} \teilbeweis {}{}{}
{Es sei umgekehrt
\mavergleichskette
{\vergleichskette
{ \operatorname{kern} \varphi }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und seien
\mavergleichskette
{\vergleichskette
{ v_1,v_2 }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegeben mit
\mavergleichskette
{\vergleichskette
{ \varphi(v_1) }
{ = }{ \varphi(v_2) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dann ist wegen der Linearität
\mavergleichskettedisp
{\vergleichskette
{\varphi(v_1 - v_2) }
{ =} {\varphi(v_1) - \varphi(v_2) }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{.} Daher ist
\mavergleichskette
{\vergleichskette
{ v_1-v_2 }
{ \in }{ \operatorname{kern} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und damit
\mavergleichskette
{\vergleichskette
{v_1 }
{ = }{v_2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
{}

}







\inputbemerkung
{}
{

Zu einer $m \times n$-\definitionsverweis {Matrix}{}{} $M$ ist der \definitionsverweis {Kern}{}{} der durch $M$ gegebenen \definitionsverweis {linearen Abbildung}{}{} \maabbeledisp {} {K^n} {K^m } {x} {Mx } {,} einfach der Lösungsraum des homogenen \definitionsverweis {linearen Gleichungssystems}{}{}
\mavergleichskettedisp
{\vergleichskette
{Mx }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}






\zwischenueberschrift{Die Dimensionsformel}

Die folgende Aussage heißt \stichwort {Dimensionsformel} {.}




\inputfaktbeweis
{Lineare Abbildung/Dimensionsformel/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{} und}
\faktvoraussetzung {$V$ sei endlichdimensional.}
\faktfolgerung {Dann gilt
\mavergleichskettedisp
{\vergleichskette
{ \dim_{ K } { \left( V \right) } }
{ =} { \dim_{ K } { \left( \operatorname{kern} \varphi \right) } + \dim_{ K } { \left( \operatorname{bild} \varphi \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Es sei
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ \dim_{ K } { \left( V \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Es sei
\mavergleichskette
{\vergleichskette
{U }
{ = }{ \operatorname{kern} \varphi }
{ \subseteq }{ V }
{ }{ }
{ }{ }
} {}{}{} der \definitionsverweis {Kern}{}{} der Abbildung und
\mavergleichskette
{\vergleichskette
{ k }
{ = }{ \dim_{ K } { \left( U \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} seine \definitionsverweis {Dimension}{}{} \zusatzklammer {$k \leq n$} {} {.} Es sei
\mathdisp {u_1 , \ldots , u_k} { }
eine \definitionsverweis {Basis}{}{} von $U$. Aufgrund des Basisergänzungssatzes gibt es Vektoren
\mathdisp {v_1 , \ldots , v_{n-k }} { }
derart, dass
\mathdisp {u_1 , \ldots , u_k, \, v_1 , \ldots , v_{n-k }} { }
eine Basis von $V$ ist. \teilbeweis {Wir behaupten, dass
\mathdisp {w_j = \varphi(v_j), \, j=1 , \ldots , n-k} { , }
eine Basis des Bildes ist.\leerzeichen{}}{}{}
{Es sei
\mavergleichskette
{\vergleichskette
{ w }
{ \in }{ W }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Element des Bildes
\mathl{\varphi(V)}{.} Dann gibt es ein
\mavergleichskette
{\vergleichskette
{ v }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \varphi(v) }
{ = }{ w }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dieses $v$ lässt sich mit der Basis als
\mavergleichskettedisp
{\vergleichskette
{ v }
{ =} { \sum_{i = 1}^{ k } s_i u_i + \sum_{ j = 1 }^{ n-k } t_j v_j }
{ } { }
{ } { }
{ } { }
} {}{}{} schreiben. Dann ist
\mavergleichskettealign
{\vergleichskettealign
{w }
{ =} { \varphi(v) }
{ =} { \varphi { \left( \sum_{i=1}^{ k } s_i u_i + \sum_{j = 1}^{n-k } t_j v_j \right) } }
{ =} { \sum_{i = 1}^{ k } s_i \varphi(u_i) + \sum_{j = 1}^{n- k } t_j \varphi (v_j) }
{ =} { \sum_{j = 1}^{n-k } t_j w_j }
} {} {}{,} sodass sich $w$ als \definitionsverweis {Linearkombination}{}{} der $w_j$ schreiben lässt. \teilbeweis {}{}{}
{Zum Beweis der \definitionsverweis {linearen Unabhängigkeit}{}{} der
\mathbed {w_j} {}
{j=1 , \ldots , n-k} {}
{} {} {} {,} sei eine Darstellung der Null gegeben,
\mavergleichskettedisp
{\vergleichskette
{ 0 }
{ =} { \sum_{j = 1}^{n-k } t_j w_j }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dann ist
\mavergleichskettedisp
{\vergleichskette
{ \varphi { \left( \sum_{j = 1}^{n-k } t_j v_j \right) } }
{ =} { \sum_{j = 1}^{n-k } t_j \varphi { \left( v_j \right) } }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{.} Also gehört
\mathl{\sum_{j=1}^{n-k } t_j v_j}{} zum Kern der Abbildung und daher kann man
\mavergleichskettedisp
{\vergleichskette
{ \sum_{ j = 1 }^{n-k } t_j v_j }
{ =} { \sum_{ i = 1 }^{ k } s_i u_i }
{ } { }
{ } { }
{ } { }
} {}{}{} schreiben. Da insgesamt eine Basis von $V$ vorliegt, folgt, dass alle Koeffizienten $0$ sein müssen, also sind insbesondere
\mavergleichskette
{\vergleichskette
{ t_j }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
{}}
{}

}





\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{} und $V$ sei endlichdimensional. Dann nennt man
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{rang} \, \varphi }
{ \defeq} { \dim_{ K } { \left( \operatorname{bild} \varphi \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} den \definitionswort {Rang}{} von $\varphi$.

}

Die Dimensionsformel kann man auch als
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{dim}_{ } { \left( V \right) } }
{ =} { \operatorname{dim}_{ } { \left( \operatorname{kern} \varphi \right) } + \operatorname{rang} \, \varphi }
{ } { }
{ } { }
{ } { }
} {}{}{} ausdrücken.




\inputbeispiel{}
{

Wir betrachten die durch die Matrix
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} 0 & 1 & 1 \\ 0 & 2 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & 6 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} gegebene \definitionsverweis {lineare Abbildung}{}{} \maabbeledisp {\varphi} {\R^3} {\R^4 } {\begin{pmatrix} x \\y\\ z \end{pmatrix}} {M\begin{pmatrix} x \\y\\ z \end{pmatrix} = \begin{pmatrix} y+z \\2y+2z\\ x+3y+4z\\2x+4y+6z \end{pmatrix} } {.} Zur Bestimmung des \definitionsverweis {Kerns}{}{} müssen wir das \definitionsverweis {homogene lineare Gleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} y+z \\2y+2z\\ x+3y+4z\\2x+4y+6z \end{pmatrix} }
{ =} { \begin{pmatrix} 0 \\0\\ 0\\0 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} lösen. Der Lösungsraum ist
\mavergleichskettedisp
{\vergleichskette
{L }
{ =} { { \left\{ s \begin{pmatrix} 1 \\1\\ -1 \end{pmatrix} \mid s \in \R \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{} und dies ist der Kern von $\varphi$. Der Kern ist also eindimensional und daher ist die Dimension des Bildes nach der Dimensionsformel gleich $2$.


}





\inputfaktbeweis
{Vektorraum/Endlichdimensional/Injektiv surjektiv bijektiv/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {Vektorräume}{}{} über $K$ der gleichen \definitionsverweis {Dimension}{}{} $n$. Es sei \maabbdisp {\varphi} {V} {W } {} eine \definitionsverweis {lineare Abbildung}{}{.}}
\faktfolgerung {Dann ist $\varphi$ genau dann \definitionsverweis {injektiv}{}{,} wenn $\varphi$ \definitionsverweis {surjektiv}{}{} ist.}
\faktzusatz {}
\faktzusatz {}

}
{

Dies folgt aus der Dimensionsformel und Lemma 11.3.

}







\zwischenueberschrift{Verknüpfung von linearen Abbildungen und Matrizen}





\inputfaktbeweis
{Lineare Abbildung/Matrix/Hintereinanderschaltung/Fakt}
{Lemma}
{}
{

\faktsituation {}
\faktfolgerung {Bei der \definitionsverweis {Korrespondenz}{}{} zwischen \definitionsverweis {linearen Abbildungen}{}{} und \definitionsverweis {Matrizen}{}{} entsprechen sich die \definitionsverweis {Hintereinanderschaltung}{}{} von linearen Abbildungen und die \definitionsverweis {Matrizenmultiplikation}{}{.}}
\faktzusatz {Damit ist folgendes gemeint: es seien
\mathl{U,V,W}{} \definitionsverweis {Vektorräume}{}{} über einem \definitionsverweis {Körper}{}{} $K$ mit \definitionsverweis {Basen}{}{}
\mathdisp {\mathfrak{ u } = u_1 , \ldots , u_p , \, \mathfrak{ v } = v_1 , \ldots , v_n \text{ und } \mathfrak{ w } = w_1 , \ldots , w_m} { . }
Es seien
\mathdisp {\psi:U \longrightarrow V \text{ und } \varphi: V \longrightarrow W} { }
lineare Abbildungen. Dann gilt für die beschreibenden Matrizen von
\mathl{\psi,\, \varphi}{} und der Hintereinanderschaltung
\mathl{\varphi \circ \psi}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{M^{ \mathfrak{ u } }_{ \mathfrak{ w } } (\varphi \circ \psi ) }
{ =} { ( M^{ \mathfrak{ v } }_{ \mathfrak{ w } } (\varphi) ) \circ ( M^{ \mathfrak{ u } }_{ \mathfrak{ v } }(\psi) ) }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}

}
{

Wir betrachten das \definitionsverweis {kommutative Diagramm}{}{}
\mathdisp {\begin{matrix} K^p & \stackrel{ M^{ \mathfrak{ u } }_{ \mathfrak{ v } } ( \psi) }{\longrightarrow} & K^n & \stackrel{ M^{ \mathfrak{ v } }_{ \mathfrak{ w } } ( \varphi) }{\longrightarrow} & K^m & \\ \!\!\!\!\! \Psi_{ \mathfrak{ u } } \downarrow & & \!\!\!\!\! \Psi_{ \mathfrak{ v } } \downarrow & & \downarrow \Psi_{ \mathfrak{ w } } \!\!\!\!\! & & \\ U & \stackrel{ \psi }{\longrightarrow} & V & \stackrel{ \varphi }{\longrightarrow} & W

&\!\!\!\!\! ,  \\ \end{matrix}} {  }

wobei die Kommutativität auf der Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \varphi \circ \Psi_ \mathfrak{ v } }
{ =} { \Psi_ \mathfrak{ w } \circ M^{ \mathfrak{ v } }_{ \mathfrak{ w } } ( \varphi) }
{ } { }
{ } { }
{ } { }
} {}{}{} aus Lemma 10.13 beruht. Dabei sind die \zusatzklammer {inversen} {} {} \definitionsverweis {Koordinatenabbildungen}{}{} $\psi_ \mathfrak{ v }$ jeweils bijektiv, und somit ist
\mavergleichskettedisp
{\vergleichskette
{ M^{ \mathfrak{ v } }_{ \mathfrak{ w } } ( \varphi) }
{ =} { \Psi_ \mathfrak{ w }^{-1} \circ \varphi \circ \Psi_ \mathfrak{ v } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Also ist insgesamt
\mavergleichskettealign
{\vergleichskettealign
{ M^{ \mathfrak{ u } }_{ \mathfrak{ w } } ( \varphi \circ \psi) }
{ =} { \Psi_ \mathfrak{ w }^{-1} \circ ( \varphi \circ \psi) \circ \Psi_ \mathfrak{ u } }
{ =} { { \left( \Psi_ \mathfrak{ w }^{-1} \circ \varphi \right) } \circ { \left( \Psi_ \mathfrak{ v } \circ \Psi_ \mathfrak{ v }^{-1} \right) } \circ { \left( \psi \circ \Psi_ \mathfrak{ u } \right) } }
{ =} { { \left( \Psi_ \mathfrak{ w }^{-1} \circ \varphi \circ \Psi_ \mathfrak{ v } \right) } \circ { \left( \Psi_ \mathfrak{ v }^{-1} \circ \psi \circ \Psi_ \mathfrak{ u } \right) } }
{ =} { M^{ \mathfrak{ v } }_{ \mathfrak{ w } } ( \varphi ) \circ M^{ \mathfrak{ u } }_{ \mathfrak{ v } } ( \psi) }
} {} {}{,} wobei hier überall die Abbildungsverknüpfung steht. Nach Aufgabe 10.20 stimmt die letzte Verknüpfung mit dem Matrixprodukt überein.

}

Daraus folgt beispielsweise, dass das Produkt von Matrizen assoziativ ist.






\zwischenueberschrift{Lineare Abbildungen und Basiswechsel}





\inputfaktbeweis
{Lineare Abbildung/Endlichdimensional/Basiswechsel/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {endlichdimensionale}{}{} $K$-\definitionsverweis {Vektor\-räume}{}{.} Es seien \mathkor {} {\mathfrak{ v }} {und} {\mathfrak{ u }} {} \definitionsverweis {Basen}{}{} von $V$ und \mathkor {} {\mathfrak{ w }} {und} {\mathfrak{ z }} {} Basen von $W$. Es sei \maabbdisp {\varphi} {V} {W } {} eine \definitionsverweis {lineare Abbildung}{}{,} die bezüglich der Basen \mathkor {} {\mathfrak{ v }} {und} {\mathfrak{ w }} {} durch die \definitionsverweis {Matrix}{}{}
\mathl{M^ \mathfrak{ v }_ \mathfrak{ w }(\varphi)}{} beschrieben werde.}
\faktfolgerung {Dann wird $\varphi$ bezüglich der Basen \mathkor {} {\mathfrak{ u }} {und} {\mathfrak{ z }} {} durch die Matrix
\mathdisp {M^{ \mathfrak{ w } }_{ \mathfrak{ z } } \circ ( M^ \mathfrak{ v }_ \mathfrak{ w }(\varphi) ) \circ ( M^{ \mathfrak{ v } }_{ \mathfrak{ u } })^{-1}} { }
beschrieben, wobei \mathkor {} {M^{ \mathfrak{ v } }_{ \mathfrak{ u } }} {und} {M^{ \mathfrak{ w } }_{ \mathfrak{ z } }} {} die \definitionsverweis {Übergangsmatrizen}{}{} sind, die die Basiswechsel von \mathkor {} {\mathfrak{ v }} {nach} {\mathfrak{ u }} {} und von \mathkor {} {\mathfrak{ w }} {nach} {\mathfrak{ z }} {} beschreiben.}
\faktzusatz {}
\faktzusatz {}

}
{

Die linearen Standardabbildungen \maabb {} {K^n} {V } {} bzw. \maabb {} {K^m} {W } {} zu den Basen seien mit
\mathl{\Psi_{ \mathfrak{ v } }, \, \Psi_{ \mathfrak{ u } }, \, \Psi_{ \mathfrak{ w } }, \, \Psi_{ \mathfrak{ z } }}{} bezeichnet. Wir betrachten das \definitionsverweis {kommutative Diagramm}{}{}


\mathdisp {\begin{matrix} K^n & & & \stackrel{ M^{ \mathfrak{ v } }_{ \mathfrak{ w } } (\varphi) }{\longrightarrow} & & & K^m \\ & \searrow \Psi_{ \mathfrak{ v } } \!\!\!\!\! & & & & \Psi_{ \mathfrak{ w } } \swarrow \!\!\!\!\! & \\ \!\!\!\!\! M^{ \mathfrak{ v } }_{ \mathfrak{ u } } \downarrow & & V & \stackrel{ \varphi }{\longrightarrow} & W & & \, \, \, \, \downarrow M^{ \mathfrak{ w } }_{ \mathfrak{ z } } \\ & \nearrow \Psi_{ \mathfrak{ u } } \!\!\!\!\! & & & & \Psi_{ \mathfrak{ z } } \nwarrow \!\!\!\!\! & \\ K^n & & & \stackrel{ M^{ \mathfrak{ u } }_{ \mathfrak{ z } } (\varphi) }{\longrightarrow} & & & K^m ,

\!\!\!\!\! 

\end{matrix}} { }

wobei die Kommutativität auf Lemma 9.1 und Lemma 10.13 beruht. In dieser Situation ergibt sich insgesamt
\mavergleichskettealign
{\vergleichskettealign
{ M^{ \mathfrak{ u } }_{ \mathfrak{ z } } (\varphi) }
{ =} { \Psi_{ \mathfrak{ z } }^{-1} \circ \varphi \circ \Psi_{ \mathfrak{ u } } }
{ =} { \Psi_{ \mathfrak{ z } }^{-1} \circ ( \Psi_{ \mathfrak{ w } } \circ M^{ \mathfrak{ v } }_{ \mathfrak{ w } } (\varphi) \circ \Psi_{ \mathfrak{ v } }^{-1} ) \circ \Psi_{ \mathfrak{ u } } }
{ =} { (\Psi_{ \mathfrak{ z } }^{-1} \circ \Psi_{ \mathfrak{ w } } ) \circ M^{ \mathfrak{ v } }_{ \mathfrak{ w } } (\varphi) \circ ( \Psi_{ \mathfrak{ v } }^{-1} \circ \Psi_{ \mathfrak{ u } } ) }
{ =} { (\Psi_{ \mathfrak{ z } }^{-1} \circ \Psi_{ \mathfrak{ w } } ) \circ M^{ \mathfrak{ v } }_{ \mathfrak{ w } } (\varphi) \circ ( \Psi_{ \mathfrak{ u } }^{-1} \circ \Psi_{ \mathfrak{ v } } )^{-1} }
} {
\vergleichskettefortsetzungalign
{ =} { M^{ \mathfrak{ w } }_{ \mathfrak{ z } } \circ M^{ \mathfrak{ v } }_{ \mathfrak{ w } } (\varphi) \circ( M^{ \mathfrak{ v } }_{ \mathfrak{ u } } )^{-1} }
{ } {}
{ } {}
{ } {}
} {}{.}

}





\inputfaktbeweis
{Endomorphismus/Endlichdimensional/Basiswechsel/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektorraum}{}{.} Es sei \maabbdisp {\varphi} {V} {V } {} eine \definitionsverweis {lineare Abbildung}{}{.} Es seien \mathkor {} {\mathfrak{ u }} {und} {\mathfrak{ v }} {} \definitionsverweis {Basen}{}{} von $V$.}
\faktfolgerung {Dann besteht zwischen den Matrizen, die die lineare Abbildung bezüglich \mathkor {} {\mathfrak{ u }} {bzw.} {\mathfrak{ v }} {} \zusatzklammer {beidseitig} {} {} beschreiben, die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ M^ \mathfrak{ u }_ \mathfrak{ u }(\varphi) }
{ =} { M^{ \mathfrak{ v } }_{ \mathfrak{ u } } \circ M^ \mathfrak{ v }_ \mathfrak{ v }(\varphi) \circ ( M^{ \mathfrak{ v } }_{ \mathfrak{ u } })^{-1} }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Dies folgt direkt aus Lemma 11.10.

}