Kurs:Mathematik (Osnabrück 2009-2011)/Teil II/Arbeitsblatt 46/latex
\setcounter{section}{46}
\zwischenueberschrift{Aufwärmaufgaben}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und $V$ ein
$K$-\definitionsverweis {Vektorraum}{}{} von
\definitionsverweis {endlicher Dimension}{}{.}
Zeige, dass der
\definitionsverweis {Dualraum}{}{}
\mathl{{ V }^{ * }}{} die gleiche Dimension wie $V$ besitzt.
}
{} {}
\inputaufgabe
{}
{
Berechne den
\definitionsverweis {Gradienten}{}{}
der Funktion
\maabbeledisp {f} {\R^3} {\R
} {(x,y,z)} {x^2y-z^3xe^{xyz}
} {,}
in jedem Punkt
\mavergleichskette
{\vergleichskette
{ P
}
{ \in }{ \R^3
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{.} Zeige, dass eine von $0$ verschiedene \definitionsverweis {lineare Abbildung}{}{} \maabbdisp {f} {V} {\R } {} keine \definitionsverweis {lokalen Extrema}{}{} besitzt. Gilt dies auch für unendlichdimensionale Vektorräume? Braucht man dazu Differentialrechnung?
}
{} {}
\inputaufgabe
{}
{
Es sei $(V, \left\langle - , - \right\rangle)$ ein
\definitionsverweis {euklidischer}{}{}
\definitionsverweis {Vektorraum}{}{,}
\mathl{G \subseteq V}{} eine
\definitionsverweis {offene Menge}{}{,}
\mathl{P \in G}{} ein Punkt und
\maabbdisp {f} {G} {\R
} {}
eine in $P$
\definitionsverweis {differenzierbare Funktion}{}{.}
Zeige, dass
\mathkor {} {f} {und} {\left(Df\right)_{P}} {}
im Punkt $P$ den gleichen
\definitionsverweis {Gradienten}{}{}
besitzen.
}
{} {}
\inputaufgabe
{}
{
Es sei $(V, \left\langle - , - \right\rangle)$ ein
\definitionsverweis {euklidischer}{}{}
\definitionsverweis {Vektorraum}{}{,}
\mathl{G \subseteq V}{} eine
\definitionsverweis {offene Menge}{}{,}
\mathl{P \in G}{} ein Punkt und
\maabbdisp {f} {G} {\R
} {}
eine in $P$
\definitionsverweis {differenzierbare Funktion}{}{.}
Zeige, dass ein Vektor
\mathl{v \in V}{} genau dann zum
\definitionsverweis {Kern}{}{}
von
\mathl{\left(Df\right)_{P}}{} gehört, wenn er
\definitionsverweis {orthogonal}{}{}
zum
\definitionsverweis {Gradienten}{}{}
\mathl{\operatorname{Grad} \, f ( P )}{} ist.
}
{} {}
\inputaufgabe
{}
{
Bestimme die \definitionsverweis {kritischen Punkte}{}{} der Funktion \maabbeledisp {f} {\R^2} {\R } {(x,y)} {x^2+y^2 } {.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme die \definitionsverweis {kritischen Punkte}{}{} der Funktion \maabbeledisp {f} {\R^2} {\R } {(x,y)} {xy^2-x } {.}
}
{} {}
\inputaufgabe
{}
{
Bestimme die \definitionsverweis {kritischen Punkte}{}{} der Funktion \maabbeledisp {f} {\R^2} {\R } {(x,y)} {x^2y-y^2+x } {.}
}
{} {}
\inputaufgabe
{}
{
Betrachte die
\definitionsverweis {Linearform}{}{}
\maabbeledisp {L} {\R^3} {\R
} {(x,y,z)} {x+3y-4z
} {.}
\aufzaehlungzwei {Bestimme den Vektor
\mavergleichskette
{\vergleichskette
{ u
}
{ \in }{ \R^3
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit der Eigenschaft
\mathdisp {\left\langle u , v \right\rangle = L(v) \text { für alle } v \in \R^3} { , }
wobei
\mathl{\left\langle - , - \right\rangle}{} das
\definitionsverweis {Standardskalarprodukt}{}{}
bezeichnet.
} {Es sei
\mavergleichskette
{\vergleichskette
{ E
}
{ = }{ { \left\{ (x,y,z) \mid 3x-2y-5z = 0 \right\} }
}
{ \subset }{ \R^3
}
{ }{
}
{ }{
}
}
{}{}{}
und es sei
\mavergleichskette
{\vergleichskette
{ \varphi
}
{ = }{ L {{|}}_E
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die
\definitionsverweis {Einschränkung}{}{}
von $L$ auf $E$. Bestimme den Vektor
\mavergleichskette
{\vergleichskette
{ w
}
{ \in }{ E
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit der Eigenschaft
\mathdisp {\left\langle w , v \right\rangle = \varphi (v) \text { für alle } v \in E} { , }
wobei
\mathl{\left\langle - , - \right\rangle}{} die Einschränkung des Standardskalarprodukts auf $E$ bezeichnet.
}
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{,}
$V$ ein
\definitionsverweis {endlichdimensionaler}{}{}
$K$-\definitionsverweis {Vektor\-raum}{}{}
und
\mathl{\left\langle - , - \right\rangle}{} eine
\definitionsverweis {Bilinearform}{}{}
auf $V$. Zeige, dass
\mathl{\left\langle - , - \right\rangle}{} genau dann
\definitionsverweis {symmetrisch}{}{}
ist, wenn es eine Basis
\mathl{v_1 , \ldots , v_n}{} von $V$ mit
\mavergleichskettedisp
{\vergleichskette
{ \left\langle v_i , v_j \right\rangle
}
{ =} { \left\langle v_j , v_i \right\rangle
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{1
}
{ \leq }{ i,j
}
{ \leq }{ n
}
{ }{
}
{ }{
}
}
{}{}{}
gibt.
}
{} {}
\inputaufgabe
{}
{
Es sei $V$ ein
\definitionsverweis {endlichdimensionaler}{}{}
\definitionsverweis {reeller Vektorraum}{}{}
mit einer
\definitionsverweis {symmetrischen}{}{}
\definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{} auf $V$. Es sei
\mathl{u_1 , \ldots , u_n}{} eine
\definitionsverweis {Orthogonalbasis}{}{}
auf $V$ mit der Eigenschaft
\mavergleichskette
{\vergleichskette
{ \left\langle u_i , u_i \right\rangle
}
{ > }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{ i
}
{ = }{ 1 , \ldots , n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass
\mathl{\left\langle - , - \right\rangle}{}
\definitionsverweis {positiv definit}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $V$ ein
\definitionsverweis {endlichdimensionaler}{}{}
\definitionsverweis {reeller Vektorraum}{}{}
und
\mathl{\left\langle - , - \right\rangle}{} eine
\definitionsverweis {symmetrische}{}{}
\definitionsverweis {Bilinearform}{}{}
auf $V$. Zeige, dass die
\definitionsverweis {Gramsche Matrix}{}{}
zu dieser Bilinearform bezüglich einer geeigneten Basis eine
\definitionsverweis {Diagonalmatrix}{}{}
ist, deren Diagonaleinträge
\mathl{1,-1}{} oder $0$ sind.
}
{} {}
\inputaufgabe
{}
{
Es sei $V$ ein
\definitionsverweis {endlichdimensionaler}{}{}
\definitionsverweis {reeller Vektorraum}{}{,}
\mavergleichskette
{\vergleichskette
{ G
}
{ \subseteq }{ V
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
eine
\definitionsverweis {offene Menge}{}{}
und
\maabbdisp {f} {G} {\R
} {}
eine zweimal
\definitionsverweis {stetig differenzierbare Funktion}{}{.} Zeige, dass die
\definitionsverweis {Hesse-Form}{}{}
von $f$ in jedem Punkt
\mathl{P \in G}{}
\definitionsverweis {symmetrisch}{}{}
ist.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{}
{
Es sei $V$ ein
\definitionsverweis {reeller Vektorraum}{}{}
mit einem
\definitionsverweis {Skalarprodukt}{}{}
\mathl{\left\langle - , - \right\rangle}{.} Zeige, dass in der Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { \left\langle v , w \right\rangle }
}
{ \leq} { \Vert {v} \Vert \cdot \Vert {w} \Vert
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
von
Cauchy-Schwarz
genau dann die Gleichheit gilt, wenn
\mathkor {} {v} {und} {w} {}
\definitionsverweis {linear abhängig}{}{}
sind.
}
{} {}
\inputaufgabe
{}
{
Bestimme die \definitionsverweis {kritischen Punkte}{}{} der Funktion \maabbeledisp {f} {\R^2} {\R } {(x,y)} {xy^3-xy+ \sin y } {.}
}
{} {}
\inputaufgabe
{}
{
Bestimme die
\definitionsverweis {globalen Extrema}{}{}
für die Funktion
\maabbeledisp {f} {D} {\R
} {(x,y)} {x^2+y^2+xy
} {,}
wobei
\mavergleichskette
{\vergleichskette
{ D
}
{ \subset }{ \R^2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
das durch die Eckpunkte
$(0,0),\, (1,0)$ und $(0,1)$
gegebene
\definitionsverweis {abgeschlossene}{}{}
\zusatzklammer {volle} {} {}
Dreieck ist.
}
{} {}
\inputaufgabe
{}
{
Berechne den Anstieg der Funktion
\maabbeledisp {f} {\R^2} {\R
} {(x,y)} {x^2y-x+y^3
} {,}
im Punkt
\mathl{P=(1,1)}{} in Richtung des Winkels
\mathl{\alpha \in [0, 2 \pi]}{.} Für welchen Winkel ist der Anstieg maximal?
}
{} {}
\inputaufgabe
{}
{
Betrachte die
\definitionsverweis {Funktion}{}{}
\maabbeledisp {f} {\R^3} {\R
} {(x,y,z)} {x+ \sin \left( y \right)-xz
} {.}
\aufzaehlungdrei{Bestimme den
\definitionsverweis {Gradienten}{}{}
$G$ von $f$ im Punkt
\mavergleichskette
{\vergleichskette
{ P
}
{ = }{ (0,0,0)
}
{ \in }{ \R^3
}
{ }{
}
{ }{
}
}
{}{}{}
bezüglich des
\definitionsverweis {Standardskalarprodukts}{}{}
\mathl{\left\langle - , - \right\rangle}{.}
}{Es sei
\mavergleichskettedisp
{\vergleichskette
{ E
}
{ =} { { \left\{ (x,y,z) \mid 2x-y+3z = 0 \right\} }
}
{ \subseteq} { \R^3
}
{ } {
}
{ } {
}
}
{}{}{}
und es sei
\mavergleichskette
{\vergleichskette
{ g
}
{ = }{ f {{|}}_E
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die
\definitionsverweis {Einschränkung}{}{}
von $f$ auf $E$. Bestimme den Gradienten $\tilde{G}$ von
\mathl{g}{} bezüglich der Einschränkung des Standardskalarprodukts auf $E$.
}{Zeige, dass $\tilde{G}$ die
\definitionsverweis {orthogonale Projektion}{}{}
von $G$ auf $E$ ist.
}
}
{} {}
\inputaufgabe
{}
{
Man gebe ein Beispiel für einen
\definitionsverweis {endlichdimensionalen}{}{}
\definitionsverweis {reellen Vektorraum}{}{}
$V$ mit einer
\definitionsverweis {symmetrischen}{}{}
\definitionsverweis {Bilinearform}{}{}
\mathl{\left\langle - , - \right\rangle}{} auf $V$ und einer
\definitionsverweis {Basis}{}{}
\mathl{u_1 , \ldots , u_n}{} von $V$ derart, dass
\mavergleichskette
{\vergleichskette
{ \left\langle u_i , u_i \right\rangle
}
{ > }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{i
}
{ = }{1 , \ldots , n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist, aber
\mathl{\left\langle - , - \right\rangle}{} nicht
\definitionsverweis {positiv definit}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Bestimme die \definitionsverweis {Gramsche Matrix}{}{} des \definitionsverweis {Standardskalarproduktes}{}{} im $\R^3$ bezüglich der \definitionsverweis {Basis}{}{} $\begin{pmatrix} 1 \\2\\ 3 \end{pmatrix},\, \begin{pmatrix} 2 \\4\\ 5 \end{pmatrix}$ und $\begin{pmatrix} 0 \\1\\ 5 \end{pmatrix}$.
}
{} {}
<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil II | >> |
---|