Kurs:Mathematik (Osnabrück 2009-2011)/Teil II/Arbeitsblatt 50/latex

\setcounter{section}{50}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabe
{}
{

Bestimme für die \definitionsverweis {Funktion}{}{} \maabbeledisp {f} {D} {\R } {(x,y)} {xy \sqrt{3- x^2-y^2} } {,} den maximalen Definitionsbereich
\mathl{D\subseteq \R^2}{} und untersuche die Funktion auf \definitionsverweis {Extrema}{}{.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Abbildung}{}{} \maabbeledisp {} {\R^2} {\R \times \R_+ } {(x,y)} {(x, e^{x+y}) } {,} \definitionsverweis {bijektiv}{}{} ist. Man gebe explizit eine \definitionsverweis {Umkehrabbildung}{}{} an.

}
{} {}




\inputaufgabe
{}
{

Definiere explizit einen \definitionsverweis {Diffeomorphismus}{}{} zwischen $\R^n$ und einer offenen Kugel
\mathl{U { \left( 0,r \right) } \subseteq \R^n}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme die \definitionsverweis {regulären Punkte}{}{} der \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^2} {\R^2 } {(x,y)} {(x^2y,x- \sin y ) } {.} Zeige, dass $\varphi$ in
\mathl{P=(1,0)}{} regulär ist und bestimme das \definitionsverweis {totale Differential}{}{} der \definitionsverweis {Umkehrabbildung}{}{} von $\varphi |_U$ in $\varphi(P)$, wobei $U$ eine offene Umgebung von $P$ sei \zusatzklammer {die nicht explizit angegeben werden muss} {} {.}

}
{} {}




\inputaufgabe
{}
{

Es seien
\mathl{U,V,W}{} \definitionsverweis {euklidische Vektorräume}{}{} und seien \mathkor {} {\varphi:U \longrightarrow V} {und} {\psi:V \longrightarrow W} {} \definitionsverweis {differenzierbare Abbildungen}{}{.} Es sei $\varphi$ \definitionsverweis {regulär}{}{} in
\mavergleichskette
{\vergleichskette
{P }
{ \in }{U }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und $\psi$ regulär in
\mavergleichskette
{\vergleichskette
{Q }
{ = }{\varphi(P) }
{ \in }{ V }
{ }{ }
{ }{ }
} {}{}{.} Ist dann
\mathl{\psi \circ \varphi}{} regulär in $P$? Unter welchen Voraussetzungen stimmt dies?

}
{} {}


\inputaufgabe
{}
{

Das \definitionsverweis {komplexe}{}{} Quadrieren \maabbeledisp {} {{\mathbb C}} {{\mathbb C} } {z} {z^2 } {,} kann man reell als \maabbeledisp {\varphi} {\R^2} {\R^2 } { x+{ \mathrm i}y = (x,y)} {(x+ { \mathrm i} y)^2 = x^2-y^2 +2{ \mathrm i}xy = (x^2-y^2,2xy) } {,} schreiben. Untersuche $\varphi$ auf \definitionsverweis {reguläre Punkte}{}{.} Auf welchen \zusatzklammer {möglichst großen} {} {} offenen Teilmengen ist $\varphi$ \definitionsverweis {umkehrbar}{}{?}

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{}
{

Man konstruiere ein Beispiel, das zeigt, dass Lemma 49.3 ohne die Voraussetzung, dass mit je zwei Punkten auch die Verbindungsgerade zur Definitionsmenge gehört, nicht gilt.

}
{} {(Tipp: Man denke daran, wie man flach auf einen steilen Berg kommt.)}




\inputaufgabe
{}
{

Es sei $V$ ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{} und sei \maabbdisp {\varphi} {V} {V } {} eine \definitionsverweis {differenzierbare Abbildung}{}{.} Zeige, dass $\varphi$ genau dann eine \definitionsverweis {Verschiebung}{}{} ist, also von der Art
\mathl{P \mapsto P+v}{} mit einem festen Vektor
\mavergleichskette
{\vergleichskette
{ v }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} wenn
\mavergleichskettedisp
{\vergleichskette
{ \left(D\varphi\right)_{P} }
{ =} { \operatorname{Id}_{ V } }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es seien \mathkor {} {V_1} {und} {V_2} {} \definitionsverweis {endlichdimensionale}{}{} \definitionsverweis {reelle Vektorräume}{}{,}
\mathl{G \subseteq V_1}{} \definitionsverweis {offen}{}{} und sei \maabbdisp {\varphi} {G} {V_2 } {} eine \definitionsverweis {stetig differenzierbare Abbildung}{}{.} Es sei
\mathl{U \subseteq G}{} eine offene Teilmenge derart, dass für jeden Punkt
\mathl{P \in U}{} das \definitionsverweis {totale Differential}{}{}
\mathl{\left(D\varphi\right)_{P}}{} \definitionsverweis {bijektiv}{}{} ist. Zeige, dass dann das \definitionsverweis {Bild}{}{}
\mathl{\varphi(U)}{} offen in $V_2$ ist.

}
{} {}




\inputaufgabe
{}
{

Betrachte die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^2} {\R^2 } {(x,y)} {(x+y,xy) } {.} \aufzaehlungvier{Bestimme die \definitionsverweis {regulären Punkte}{}{} von $\varphi$. }{Zeige, dass in den \definitionsverweis {kritischen Punkten}{}{} die Abbildung $\varphi$ nicht \definitionsverweis {lokal invertierbar}{}{} ist, dass also die Einschränkung von $\varphi$ in keiner offenen Umgebung eines kritischen Punktes bijektiv wird. }{Lässt sich jedes reelle Zahlenpaar
\mathl{(s,p)}{} als $(s,p)=(x+y,xy)$ schreiben? }{Ist ein reelles Zahlenpaar
\mathl{(x,y)}{} bis auf Vertauschen der Komponenten eindeutig durch die Summe
\mathl{x+y}{} und das Produkt
\mathl{xy}{} festgelegt? }

}
{} {}




\inputaufgabe
{}
{

Betrachte die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^3} {\R^3 } {(x,y,z)} {(x+y+z,xy+xz+yz,xyz) } {.} Zeige, dass ein Punkt
\mathl{(x,y,z)}{} genau dann ein \definitionsverweis {kritischer Punkt}{}{} von $\varphi$ ist, wenn in
\mathl{(x,y,z)}{} zwei Zahlen doppelt vorkommen.

}
{} {}




\inputaufgabe
{}
{

Betrachte die \definitionsverweis {Abbildung}{}{} \maabbeledisp {\varphi} {\R^3} {\R^2 } {(x,y,z)} {(x^2-y^2z,y+ \sin xz ) } {.} Zeige, dass die Menge der \definitionsverweis {kritischen Punkte}{}{} von $\varphi$ eine Gerade umfasst, aber auch noch weitere \zusatzklammer {mindestens einen} {} {} Punkte enthält.

}
{} {}


<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)