Kurs:Vorkurs Mathematik (Osnabrück 2009)/Arbeitsblatt 4



Injektivität und Surjektivität

Aufgabe

Eine Funktion

heißt streng wachsend, wenn für alle mit auch gilt. Zeige, dass eine streng wachsende Funktion injektiv ist.


Aufgabe

Untersuche für jedes die Funktion

auf Injektivität und Surjektivität.


Aufgabe

Zeige, dass weder die Addition

noch die Multiplikation

injektiv ist.


Aufgabe

Es sei eine Menge von Personen und die Menge der Vornamen von diesen Personen und die Menge der Nachnamen von diesen Personen. Definiere natürliche Abbildungen von nach , nach und nach und untersuche sie in Hinblick auf die relevanten Abbildungsbegriffe.


Aufgabe *

Es sei eine Menge und zwei verschiedene Elemente. Definiere durch eine Fallunterscheidung eine Bijektion von nach , die und vertauscht, und sonst alle Elemente unverändert lässt.

(Eine solche Abbildung heißt Transposition).

Aufgabe

Man gebe Beispiele für Abbildungen

derart, dass injektiv, aber nicht surjektiv ist, und dass surjektiv, aber nicht injektiv ist.


Aufgabe

Man beschreibe eine Bijektion zwischen und .


Aufgabe *

Es seien Mengen und

Abbildungen mit der Hintereinanderschaltung

Zeige: Wenn injektiv ist, so ist auch injektiv.


Aufgabe

Es seien Mengen und

Abbildungen mit der Hintereinanderschaltung

Zeige: Wenn surjektiv ist, so ist auch surjektiv.

Zeige durch Beispiele, dass bei den beiden vorhergehenden Aufgaben die Umkehrung nicht gilt.



Graph einer Abbildung

Aufgabe *

Es seien und Mengen und es sei

eine Abbildung mit dem Graphen . Zeige, dass die Abbildung

eine Bijektion zwischen und dem Graphen induziert. Was ist die Verknüpfung von mit der zweiten Projektion


Aufgabe

Wie kann man sich den Graphen einer Abbildung

und wie sich den Graphen einer Abbildung

vorstellen?


Aufgabe

Skizziere den Graphen der reellen Addition

und den Graphen der reellen Multiplikation




Mengenkonstruktionen und Abbildungen

Aufgabe *

Seien und Mengen und sei eine Abbildung. Zeige, dass durch die Festlegung

wenn

eine Äquivalenzrelation auf definiert wird.


Aufgabe

Es seien Mengen. Stifte eine Bijektion zwischen

Man mache sich diese Situation für und klar.

Aufgabe

Es seien Mengen. Stifte eine Bijektion zwischen


Aufgabe

Es sei eine Menge. Stifte eine Bijektion zwischen


Aufgabe

Es sei eine Menge, die als disjunkte Vereinigung

gegeben ist. Definiere eine Bijektion zwischen der Potenzmenge und der Produktmenge . Wie verhalten sich diese beiden Mengen, wenn und zwar eine Vereinigung von ergeben, aber nicht disjunkt sind, und umgekehrt?


Aufgabe

Es sei

eine Abbildung. Zeige, dass das Urbildnehmen

folgende Eigenschaften besitzt (für beliebige Teilmengen ):

  1. ,
  2. ,
  3. .


Aufgabe

Es sei

eine Abbildung. Zeige, dass das Bildnehmen

folgende Eigenschaften besitzt (für beliebige Teilmengen ):

  1. ,
  2. ,
  3. .

Zeige durch Beispiele, dass die beiden Inklusionen in (1) und (3) echt sein können.




Abbildungen in der Aussagenlogik

Aufgabe

Interpretiere die Wahrheitstabellen zu den Junktoren als Wertetabellen von Funktionen. Was sind die Definitions-, die Werte- und die Bildmengen dieser Funktionen?


Aufgabe

Es sei eine Menge von Aussagenvariablen und die damit definierte formale Sprache, also die Menge aller formalen Ausdrücke, die man von ausgehend mittels der Junktoren und mit Klammern sinnvoll basteln kann. Zeige, dass es zu einer gegebenen Belegungsfunktion

eine eindeutig bestimmte Fortsetzung

gibt, die die Bedeutung (die Wahrheitsfunktion) der Junktoren respektiert.


Aufgabe

Es sei eine Menge von Aussagenvariablen und eine Aussage in der zugehörigen formalen Sprache . Es sei

eine Abbildung und es sei diejenige Aussage, die entsteht, wenn man in jede Aussagenvariable durch ersetzt. Zeige die folgenden Aussagen.

  1. Wenn eine Tautologie ist, so ist auch eine Tautologie.
  2. Wenn injektiv ist, so ist genau dann eine Tautologie, wenn dies für gilt.
  3. kann eine Tautologie sein, auch wenn keine Tautologie ist.
  4. Die Aussagen gelten ebenso, wenn man überall Tautologie durch Kontradiktion ersetzt.




Abbildungen aus dem Leben

Die folgenden drei Aufgaben sind eher zum Diskutieren als zum Abgeben.

Aufgabe

Man mache sich klar, in welcher Weise die in der Vorlesung angeführten Diagramme Abbildungen darstellen.


Aufgabe

Modelliere[1] eine Bundestagswahl mit Hilfe von geeigneten Abbildungen.


Aufgabe

Studiere die Abbildungen, die in den folgenden Diagrammen beschrieben werden. Ist das Vokabular sinnvoll? Inwiefern sind die Abbildungen politisch, inwiefern mathematisch festgelegt?

































Fußnoten Bearbeiten

  1. Unter einem Modell für eine alltägliche oder wissenschaftliche Begebenheit versteht man in der Mathematik eine mathematische Nachbildung, die wesentliche Strukturen der Begebenheit widerspiegelt. Dies spielt insbesondere in der angewandten Mathematik, aber auch in der mathematischen Physik, den anderen Naturwissenschaften, der Ökonomie u.s.w. eine große Rolle.