Mannigfaltigkeit/Differentialform/Interpretationen/Bemerkung

Eine -Form ordnet also jedem Punkt der Mannigfaltigkeit ein Element aus zu. Dies ist nach Fakt und Fakt das gleiche wie eine alternierende multilineare Abbildung

Diese zugehörige Abbildung bezeichnen wir ebenfalls mit ; für Tangentialvektoren ist also

eine reelle Zahl. Dabei treten zwei grundverschiedene Argumente auf, einerseits der Punkt der Mannigfaltigkeit und andererseits Elemente aus dem Tangentialraum an diesem Punkt. Die Abhängigkeit von den Tangentialvektoren ist verhältnismäßig einfach, da es sich ja um eine alternierende multilineare Abbildung handelt, dagegen ist die Abhängigkeit von der Mannigfaltigkeit beliebig kompliziert. Da die Dachprodukte des Kotangentialbündels nach Aufgabe selbst Mannigfaltigkeiten sind, kann man sofort von stetigen oder (wenn eine -Mannigfaltigkeit ist) differenzierbaren Differentialformen sprechen.

Für kommt der Kotangentialraum nur formal vor, eine -Form ist nichts anderes als eine Funktion . Eine -Form (man spricht auch von einer Pfaffschen Form) ordnet jedem Punkt und jedem Tangentialvektor an eine reelle Zahl zu. Für ist das -fache Dachprodukt der Nullraum und daher gibt es gar keine nichttrivialen Formen von diesem Grad. Besonders wichtig ist der Fall . Dann besitzt das -te Dachprodukt den Rang (d. h. die Dimension ist in jedem Punkt ) und ein Schnitt darin wird lokal durch eine einzige Funktion beschrieben. Eine empfehlenswerte Vorstellung ist dabei, dass zu Tangentialvektoren die Zahl das („orientierte“) Volumen des durch die Vektoren im Tangentialraum aufgespannten Paralleltops angibt. Diese Vorstellung ist auch bei kleineren hilfreich, mit den kann man das -dimensionale Volumen des durch Tangentialvektoren erzeugten Parallelotops berechnen. Diese Vorstellung wird präzisiert, wenn man über eine -dimensionale abgeschlossene Untermannigfaltigkeit integriert.