Matrix/2x2/Scherungsmatrizen/Charakteristisches Polynom/Beispiel
Wir betrachten -Scherungsmatrizen
mit . Das charakteristische Polynom ist
sodass der einzige Eigenwert von ist. Den zugehörigen Eigenraum berechnet man als
Aus
folgt, dass ein Eigenvektor ist, und dass bei der Eigenraum eindimensional ist (bei liegt die Identität vor und der Eigenraum ist zweidimensional). Bei ist die algebraische Vielfachheit des Eigenwerts gleich , die geometrische Vielfachheit gleich .