Matrix/Spaltenrang/Zeilenrang/Einführung/Textabschnitt


Es sei ein Körper und sei eine -Matrix über . Dann nennt man die Dimension des von den Spalten erzeugten Untervektorraums von den (Spalten-)Rang der Matrix, geschrieben



Es sei ein Körper und es seien und Vektorräume über der Dimension bzw. . Es sei

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix beschrieben werde.

Dann gilt

Beweis

Siehe Aufgabe.


Zur Formulierung der nächsten Aussage führen wir den Zeilenrang einer -Matrix als die Dimension des von den Zeilen erzeugten Unterraumes von ein.



Es sei ein Körper und sei eine -Matrix über .

Dann stimmt der Spaltenrang mit dem Zeilenrang überein.

Der Rang ist gleich der in Fakt verwendeten Zahl .

Bei elementaren Zeilenumformungen ändert sich der von den Zeilen erzeugte Raum nicht, und damit ändert sich auch nicht der Zeilenrang. Der Zeilenrang stimmt also mit dem Zeilenrang der in Fakt angegebenen Matrix in Stufenform überein. Diese hat den Zeilenrang , da die ersten Zeilen linear unabhängig sind und ansonsten nur Nullzeilen auftauchen. Sie hat aber auch den Spaltenrang , da wiederum die ersten Spalten (wenn man auch noch die Spalten vertauscht hat) linear unabhängig sind und die weiteren Spalten Linearkombinationen dieser Spalten sind. Die Aufgabe zeigt, dass sich bei elementaren Zeilenumformungen auch der Spaltenrang nicht ändert.


Beide Ränge stimmen also überein, sodass wir im Folgenden nur noch vom Rang einer Matrix sprechen werden.



Es sei ein Körper und sei eine -Matrix über . Dann sind folgende Aussagen äquivalent.

  1. ist invertierbar.
  2. Der Rang von ist .
  3. Die Zeilen von sind linear unabhängig.
  4. Die Spalten von sind linear unabhängig.

Beweis

Dies folgt aus Fakt und aus Fakt.