Metrischer Raum/Häufungspunkt und konvergente Teilfolge/Aufgabe
Es sei ein metrischer Raum und sei eine Folge in . Zeige, dass ein Punkt genau dann ein Häufungspunkt der Folge ist, wenn es eine gegen konvergente Teilfolge
gibt.Es sei ein metrischer Raum und sei eine Folge in . Zeige, dass ein Punkt genau dann ein Häufungspunkt der Folge ist, wenn es eine gegen konvergente Teilfolge
gibt.