Potenzreihen/R/Einführung/Textabschnitt
Es sei eine Folge von reellen Zahlen und eine weitere reelle Zahl. Dann heißt die Reihe
die Potenzreihe in zu den Koeffizienten .
Bei Potenzreihen ist es wichtig, dass man variieren kann und dass die Potenzreihe in einem Konvergenzintervall eine Funktion in darstellt. Jedes Polynom ist eine Potenzreihe, bei der allerdings alle Koeffizienten ab einem bestimmten Glied gleich sind. In diesem Fall hat man kein Konvergenzproblem.
Eine wichtige Potenzreihe haben wir schon in der ten Vorlesung kennengelernt, nämlich die geometrische Reihe (hier sind alle Koeffizienten gleich ), die für konvergiert und dort die Funktion darstellt, siehe Fakt. Eine weitere besonders wichtige Potenzreihe ist die Exponentialreihe, die für jede reelle Zahl konvergiert und zur reellen Exponentialfunktion führt. Ihre Umkehrfunktion ist der natürliche Logarithmus.
Das Konvergenzverhalten einer Potenzreihe wird durch den folgenden Satz beschrieben.
Es sei
eine Potenzreihe und es gebe ein derart, dass konvergiere.
Dann gibt es ein positives (wobei erlaubt ist) derart, dass für alle mit die Reihe absolut konvergiert. Auf einem solchen (offenen) Konvergenzintervall stellt die Potenzreihe eine stetige Funktion dar.
Beweis
Wenn zwei Funktionen durch Potenzreihen gegeben sind, so wird ihre Summe einfach durch die
(koeffizientenweise definierte)
Summe der Potenzreihen beschrieben. Es ist keineswegs selbstverständlich, durch welche Potenzreihe ihr Produkt beschrieben werden kann. Die Antwort gibt das Cauchy-Produkt von Reihen.
Auch für die folgende Aussage geben wir keinen Beweis.
Es seien
zwei absolut konvergente Reihen reeller Zahlen.
Dann ist auch das Cauchy-Produkt absolut konvergent und für die Summe gilt
Dies hat die Auswirkung, dass das Produkt von Potenzreihen durch eine Potenzreihe gegeben ist, deren Koeffizienten sich wie bei der Multiplikation von Polynomen ergeben, siehe Aufgabe.