Reelle Funktionen/Differenzierbarkeit/Einführung/Textabschnitt
In diesem Abschnitt betrachten wir Funktionen
wobei eine Teilmenge ist. Wir wollen erklären, wann eine solche Funktion in einem Punkt differenzierbar ist. Die intuitive Idee ist dabei, für einen weiteren Punkt die Sekante durch die beiden Punkte und des Funktionsgraphen zu ziehen und dann „ gegen laufen zu lassen“. Wenn sich dieser Grenzwertprozess sinnvoll durchführen lässt, so wird aus den Sekanten eine Tangente. Dieser Grenzwertprozess wird über den Begriff des Grenzwertes einer Funktion präzise gefasst, den wir im Anschluss an die Stetigkeit eingeführt haben.
Es sei eine Teilmenge, ein Punkt und
eine Funktion. Zu , , heißt die Zahl
der Differenzenquotient von zu und .
Der Differenzenquotient ist die Steigung der Sekante am Graph durch die beiden Punkte und . Für ist dieser Quotient nicht definiert. Allerdings kann ein sinnvoller Limes für existieren. Dieser repräsentiert dann die Steigung der Tangente an im Punkt (oder an der Stelle ).
Die Ableitung in einem Punkt ist, falls sie existiert, ein Element in . Häufig nimmt man die Differenz als Parameter für den Limes des Differenzenquotienten, und lässt gegen gehen, d.h. man betrachtet
Die Bedingung wird dann zu , . Wenn die Funktion einen eindimensionalen Bewegungsvorgang beschreibt, also eine von der Zeit abhängige Bewegung auf einer Strecke, so ist der Differenzenquotient die (effektive) Durchschnittsgeschwindigkeit zwischen den Zeitpunkten und und ist die Momentangeschwindigkeit zum Zeitpunkt .
Es seien und sei
eine affin-lineare Funktion. Zur Bestimmung der Ableitung in einem Punkt betrachtet man
Dies ist konstant gleich , sodass der Limes für gegen existiert und gleich ist. Die Ableitung in jedem Punkt existiert demnach und ist gleich . Die Steigung der affin-linearen Funktion ist also die Ableitung.
Wir betrachten die Funktion
Der Differenzenquotient zu und ist
Der Limes davon für gegen ist . Die Ableitung von in ist daher .