Riemann Integral/Treppenfunktionen mit gleichem Limes/Integral/Fakt
Es sei ein kompaktes Intervall und sei
eine Funktion. Es gebe eine Folge von unteren Treppenfunktionen mit und eine Folge von oberen Treppenfunktionen mit . Es sei vorausgesetzt, dass die beiden zugehörigen Folgen der Treppenintegrale konvergieren und dass ihr Grenzwert übereinstimmt.
Dann ist Riemann-integrierbar, und das bestimmte Integral ist gleich diesem Grenzwert, also