Es sei Δ {\displaystyle {}\Delta } ein simplizialer Komplex, S = K [ X 1 , … , X n ] / I Δ {\displaystyle {}S=K[X_{1},\ldots ,X_{n}]/I_{\Delta }} der zugehörige Stanley-Reisner-Ring und R {\displaystyle {}R} die Lokalisierung von S {\displaystyle {}S} am maximalen Ideal ( X 1 , … , X n ) {\displaystyle {}{\left(X_{1},\ldots ,X_{n}\right)}} . Die Dimension von Δ {\displaystyle {}\Delta } sei d {\displaystyle {}d} und Δ {\displaystyle {}\Delta } besitze k {\displaystyle {}k} Facetten. Zeige, dass die Hilbert-Samuel-Multiplizität von R {\displaystyle {}R} gleich k {\displaystyle {}k} ist.