Vektorraum/Lineare Unabhängigkeit/Einführung/Textabschnitt


Definition  

Es sei ein Körper und ein -Vektorraum. Dann heißt eine Familie von Vektoren , , (mit einer beliebigen endlichen Indexmenge ) linear unabhängig, wenn eine Gleichung

nur bei für alle möglich ist.

Wenn eine Familie nicht linear unabhängig ist, so nennt man sie linear abhängig. Man nennt übrigens eine Linearkombination eine Darstellung des Nullvektors. Sie heißt die triviale Darstellung, wenn alle Koeffizienten gleich sind, andernfalls, wenn also mindestens ein Koeffizient nicht ist, spricht man von einer nichttrivialen Darstellung der Null. Eine Familie von Vektoren ist genau dann linear unabhängig, wenn man mit ihnen nur auf die triviale Art den Nullvektor darstellen kann. Dies ist auch äquivalent dazu, dass man keinen Vektor aus der Familie als Linearkombination der anderen ausdrücken kann.


Beispiel  

Die Standardvektoren im sind linear unabhängig. Eine Darstellung

bedeutet ja einfach

woraus sich aus der -ten Zeile direkt ergibt.



Beispiel  

Die drei Vektoren

sind linear abhängig. Es ist nämlich

eine nichttriviale Darstellung des Nullvektors.




Lemma

Es sei ein Körper, ein -Vektorraum und , , eine Familie von Vektoren in . Dann gelten folgende Aussagen.

  1. Wenn die Familie linear unabhängig ist, so ist auch zu jeder Teilmenge die Familie  , , linear unabhängig.
  2. Die leere Familie ist linear unabhängig.
  3. Wenn die Familie den Nullvektor enthält, so ist sie nicht linear unabhängig.
  4. Wenn in der Familie ein Vektor mehrfach vorkommt, so ist sie nicht linear unabhängig.
  5. Ein einzelner Vektor ist genau dann linear unabhängig, wenn ist.
  6. Zwei Vektoren und sind genau dann linear unabhängig, wenn weder ein skalares Vielfaches von ist noch umgekehrt.

Beweis

Siehe Aufgabe.


Bemerkung  

Die Vektoren sind genau dann linear abhängig, wenn das homogene lineare Gleichungssystem

eine nichttriviale (d.h. von verschiedene) Lösung besitzt.