Aussagenlogik/Vollständigkeitssatz/Vorbereitungen/Abzählbar/Auffüllung/Textabschnitt

Wir wollen zeigen, dass jede widerspruchsfreie Ausdrucksmenge erfüllbar ist. Die Strategie ist hierbei, sie zu einer maximal widerspruchsfreien Ausdrucksmenge aufzufüllen und dann die vorstehende Aussage anzuwenden. Wir unterscheiden die beiden Fälle, wo die Aussagenvariablenmenge abzählbar ist und den allgemeinen Fall einer beliebigen Aussagenvariablenmenge. Letzteres erfordert stärkere mengentheoretische Hilfsmittel, nämlich das Lemma von Zorn.



Es sei eine abzählbare Menge an Aussagenvariablen und eine widerspruchsfreie Teilmenge der zugehörigen Sprache der Aussagenlogik.

Dann kann man durch sukzessive Hinzunahme von entweder oder und durch Abschluss unter der Ableitungsbeziehung zu einer maximal widerspruchsfreien Teilmenge ergänzen.

Es sei , , eine (surjektive, aber nicht notwendigerweise injektive) Aufzählung der Aussagenvariablen. Die Voraussetzung bedeutet, dass keinen Widerspruch enthält. Wir konstruieren eine (endliche oder abzählbar unendliche) Folge von aufsteigenden widerspruchsfreien Teilmengen , wobei in für jede Variable , , die Alternative entweder oder gilt. Das Konstruktionsverfahren definieren und diese Aussage beweisen wir durch Induktion über . Für ist dies richtig. Es sei schon konstruiert. Bei oder setzen wir

Wegen der Widerspruchsfreiheit von können nicht sowohl als auch zu gehören. Wenn weder noch zu gehören, so setzen wir

(man könnte genauso gut hinzunehmen). Nach Konstruktion ist abgeschlossen unter der Ableitungsbeziehung und erfüllt die (Oder)-Alternative für alle Variablen , . Wenn widersprüchlich wäre, so gelte insbesondere . Dann würde aber auch gelten und somit nach der Fallunterscheidungsregel auch , also im Widerspruch zu dem Fall, in dem wir uns befinden. Daher liegt für die Aussagenvariablen auch die Entweder-Oder-Alternative vor.

Mit dieser induktiven Definition setzen wir

Diese Menge ist widerspruchsfrei, da andernfalls schon eines der einen Widerspruch enthalten würde, und auch abgeschlossen unter Ableitungen, da dies für die einzelnen gilt und eine Ableitung nur endlich viele Voraussetzungen besitzt. Ferner gilt für jedes die Alternative oder . Damit sind die Voraussetzungen von Fakt erfüllt und ist maximal widerspruchsfrei.



Wir betrachten die Aussagenvariablenmenge und die Ausdrucksmenge

Diese wollen wir zu einer maximal widerspruchsfreien Menge gemäß Fakt ergänzen. Wenn wir im ersten Schritt hinzunehmen, so ergibt sich sukzessive für alle . Es ist dann schon maximal widerspruchsfrei. Wählt man hingegen im ersten Schritt , so gehört weder noch zu . Beim zweiten Schritt hat man dann die Freiheit, ob man oder zur Definition von hinzunimmt, und so weiter.