Endomorphismus/Diagonalisierbar/Algebraische und geometrische Vielfachheit/Fakt/Beweis/Aufgabe/Lösung
Wenn
diagonalisierbar
ist, so kann man sofort annehmen, dass bezüglich einer Basis aus Eigenvektoren durch eine
Diagonalmatrix
beschrieben wird. Die Diagonaleinträge dieser Matrix sind die Eigenwerte, und diese wiederholen sich gemäß ihrer
geometrischen Vielfachheit.
Das
charakteristische Polynom
lässt sich auch direkt aus dieser Diagonalmatrix ablesen, jeder Diagonaleintrag trägt als Linearfaktor bei.
Für die Umkehrung seien die verschiedenen Eigenwerte und
seien die (geometrischen und algebraischen) Vielfachheiten. Da nach Voraussetzung das charakteristische Polynom in Linearfaktoren zerfällt, muss die Summe dieser Zahlen gleich sein. Nach Fakt ist die Summe der Eigenräume
direkt. Nach Voraussetzung ist die Dimension links ebenfalls gleich , sodass Gleichheit vorliegt. Nach Fakt
ist diagonalisierbar.