Gruppe/Homomorphismus/Einführung und Standardbeispiele/Textabschnitt


Definition  

Seien und Gruppen. Eine Abbildung

heißt Gruppenhomomorphismus, wenn die Gleichheit

für alle gilt.

Die Menge der Gruppenhomomorphismen von nach wird mit

bezeichnet. Aus der linearen Algebra sind vermutlich die linearen Abbildungen zwischen Vektorräume bekannt, welche insbesondere Gruppenhomomorphismen sind, darüber hinaus aber auch noch mit der skalaren Multiplikation verträglich sind. Die folgenden beiden Lemmata folgen direkt aus der Definition.


Lemma  

Es seien und Gruppen und sei ein Gruppenhomomorphismus.

Dann ist und für jedes .

Beweis  

Zum Beweis der ersten Aussage betrachten wir

Durch Multiplikation mit folgt .
Zum Beweis der zweiten Behauptung verwenden wir

Das heißt, dass die Eigenschaft besitzt, die für das Inverse von charakteristisch ist. Da das Inverse in einer Gruppe nach Fakt eindeutig bestimmt ist, muss gelten.



Lemma

Es seien Gruppen.

Dann gelten folgende Eigenschaften.

  1. Die Identität

    ist ein Gruppenhomomorphismus.

  2. Sind und Gruppenhomomorphismen, so ist auch die Hintereinanderschaltung ein Gruppenhomomorphismus.
  3. Ist eine Untergruppe, so ist die Inklusion ein Gruppenhomomorphismus.
  4. Es sei die triviale Gruppe. Dann ist die Abbildung , die auf schickt, ein Gruppenhomomorphismus. Ebenso ist die (konstante) Abbildung ein Gruppenhomomorphismus.

Beweis

Das ist trivial.



Beispiel  

Betrachte die additive Gruppe der reellen Zahlen, also , und die multiplikative Gruppe der positiven reellen Zahlen, also . Dann ist die Exponentialabbildung

ein Gruppenisomorphismus. Dies beruht auf grundlegenden analytischen Eigenschaften der Exponentialfunktion. Die Homomorphieeigenschaft ist lediglich eine Umformulierung des Exponentialgesetzes

Die Injektivität der Abbildung folgt aus der strengen Monotonie, die Surjektivität folgt aus dem Zwischenwertsatz. Die Umkehrabbildung ist der natürliche Logarithmus, der somit ebenfalls ein Gruppenisomorphismus ist.




Lemma  

Es sei eine Gruppe.

Dann entsprechen sich eindeutig Gruppenelemente und Gruppenhomomorphismen von nach über die Korrespondenz

Beweis  

Es sei fixiert. Dass die Abbildung

ein Gruppenhomomorphismus ist, ist eine Umformulierung der Potenzgesetze. Wegen erhält man aus der Potenzabbildung das Gruppenelement zurück. Umgekehrt ist ein Gruppenhomomorphismus durch eindeutig festgelegt, da für positiv und für negativ gelten muss.


Man kann den Inhalt dieses Lemmas auch kurz durch ausdrücken. Die Gruppenhomomorphismen von einer Gruppe nach sind schwieriger zu charakterisieren. Die Gruppenhomomorphismen von nach sind die Multiplikationen mit einer festen ganzen Zahl , also