Integrationstheorie/Lemma von Fatou/Fakt/Beweis

Beweis

Die Funktionen und sind nach Aufgabe bzw. Fakt messbar, und die Folge konvergiert nach Aufgabe wachsend gegen . Wir können den Satz von der monotonen Konvergenz anwenden und erhalten

Für jedes ist wegen

für alle auch

für alle und damit

wobei die Gleichheit rechts darauf beruht, dass Häufungspunkte nicht von endlich vielen Folgengliedern abhängen.  Dies ergibt insgesamt die Behauptung.