Kummererweiterung/Simultane Radikalerweiterung/Äquivalenz/Fakt/Beweis

Beweis

Aus Fakt und Fakt  (3) folgt, dass eine Kummererweiterung die angegebene Radikaldarstellung besitzt.
Zum Beweis der Umkehrung sei mit . Wir müssen zeigen, dass diese Erweiterung galoissch mit abelscher Galoisgruppe ist. Es sei eine primitive -te Einheitswurzel. Die Produkte erfüllen ebenfalls . Da man die als von verschieden annehmen kann, und primitiv ist, sind diese Produkte für jedes untereinander verschieden. Dies bedeutet, dass die Polynome über in verschiedene Linearfaktoren zerfallen. Damit ist der Zerfällungskörper dieser separablen Polynome, sodass nach Fakt eine Galoiserweiterung vorliegt. Sei die Galoisgruppe dieser Erweiterung. Für jedes und jedes ist ebenfalls eine Lösung der Gleichung und daher ist mit einem gewissen (von und abhängigen) . Für zwei Automorphismen ist daher

Somit wirken die Automorphismen auf dem Erzeugendensystem kommutativ und daher ist . Damit ist die Galoisgruppe abelsch.
Für jedes ist ferner

mit einem gewissen . Also ist , sodass ein Vielfaches des Exponenten ist.