Kurs:Algebraische Kurven (Osnabrück 2012)/Arbeitsblatt 6



Aufwärmaufgaben

Aufgabe

Bestimme für die parametrisierte Kurve

eine Kurvengleichung.


Aufgabe *

Es sei ein Körper. Betrachte die durch

definierte Parametrisierung. Bestimme eine (nichttriviale) algebraische Gleichung, die für alle Bildpunkte dieser Abbildung erfüllt ist. Man gebe auch einen Punkt in der affinen Ebene an, der nicht auf der Bildkurve liegt.


Aufgabe

Es sei ein Körper der Charakteristik und von verschieden. Zeige, dass das Polynom

irreduzibel ist.


Aufgabe

Beweise Lemma 6.9.


Aufgabe

Es sei ein Punkt in der affinen Ebene und und verschiedene Geraden durch . Es sei , , eine ebene algebraische Kurve. Beschreibe explizit eine Variablentransformation (einen Koordinatenwechsel) derart, dass in den neuen Koordinaten der Nullpunkt wird und die Geraden zum Achsenkreuz werden. Wie lautet die Kurvengleichung in den neuen Koordinaten?


Aufgabe

Zeige, dass für affin-algebraische Mengen die Beziehung der affin-linearen Äquivalenz eine Äquivalenzrelation ist.


Aufgabe

Sei eine polynomiale Abbildung und sei eine ebene rationale Kurve. Es sei ferner vorausgesetzt, dass durch nicht auf einen einzigen Punkt abgebildet wird. Zeige, dass dann ebenfalls eine rationale Kurve ist.


Aufgabe

Wir betrachten die Abbildung

Bestimme eine algebraische Gleichung für das Bild. Untersuche die Abbildung auf Injektivität und Surjektivität (als Abbildung nach ). Vergleiche diese Abbildung mit den in Aufgabe 6.8 diskutierten Abbildungen.


Aufgabe

Es sei ein Körper und der Polynomring über in Variablen und der Polynomring in Variablen. Zu sei die Homogenisierung (bezüglich ) und zu sei die (durch gegebene) Dehomogenisierung von . Zeige, dass , aber nicht gelten muss.


Aufgabe

Es sei ein Körper und der Polynomring über in Variablen. Es seien homogene Polynome vom gleichen Grad. Für die Dehomogenisierungen (bezüglich ) gelte . Zeige, dass dann ist.




Aufgaben zum Abgeben

Die folgende Aufgabe erfordert eventuell den Einsatz eines Computers.

Aufgabe (6 Punkte)

Bestimme für die Abbildung

eine algebraische Gleichung der Bildkurve.


Aufgabe (5 Punkte)

Wir betrachten die beiden Abbildungen

Zeige, dass das Bild der beiden Abbildungen die gleiche algebraische Gleichung erfüllt. Untersuche die Abbildungen auf Injektivität und Surjektivität (als Abbildung nach ). Welche Abbildung liefert eine „bessere“ Beschreibung von ?


Aufgabe (4 Punkte)

Sei ein Körper und ein irreduzibles Polynom. Die Nullstellenmenge sei unendlich. Zeige, dass dann eine irreduzible affin-algebraische Menge ist.

Man gebe auch ein Beispiel, dass diese Aussage in drei Variablen falsch ist.



<< | Kurs:Algebraische Kurven (Osnabrück 2012) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)