Kurs:Analysis/Teil I/Test 1/Klausur mit Lösungen/kontrolle



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Punkte 3 3 4 2 2 3 2 5 4 1 5 1 2 3 3 3 3 5 2 6 2 64




Aufgabe (3 Punkte)


Lösung

  1. Man nennt die Menge

    die Produktmenge der Mengen und .

  2. Die Abbildung

    ist injektiv, wenn für je zwei verschiedene Elemente auch und verschieden sind.

  3. Die Gaußklammer ist die größte ganze Zahl .
  4. Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  5. Ein angeordneter Körper heißt vollständig, wenn jede Cauchy-Folge in konvergiert.
  6. Die Eulersche Zahl ist durch

    definiert.


Aufgabe (3 Punkte)


Lösung

  1. Für in einem Körper gilt
  2. Für und ist
  3. Es sei ein angeordneter Körper, und es seien und drei Folgen in . Es gelte

    und und

    konvergieren beide gegen den gleichen Grenzwert . Dann konvergiert auch gegen diesen Grenzwert .


Aufgabe (4 (1+3) Punkte)

In einer Höhle befinden sich im Innern am Ende des Ganges vier Personen. Sie haben eine Taschenlampe bei sich und der Gang kann nur mit der Taschenlampe begangen werden. Dabei können höchstens zwei Leute gemeinsam durch den Gang gehen. Die Personen sind unterschiedlich geschickt, die erste Person benötigt eine Stunde, die zweite Person benötigt zwei Stunden, die dritte Person benötigt vier Stunden und die vierte Person benötigt fünf Stunden, um den Gang zu durchlaufen. Wenn zwei Personen gleichzeitig gehen, entscheidet die langsamere Person über die Geschwindigkeit.

  1. Die Batterie für die Taschenlampe reicht für genau Stunden. Können alle vier die Höhle verlassen?
  2. Die Batterie für die Taschenlampe reicht für genau Stunden. Können alle vier die Höhle verlassen?


Lösung


Aufgabe (2 Punkte)

Es seien und Mengen. Beweise die Identität


Lösung

Es sei . Dann ist und . Letzteres bedeutet oder . Im ersten Fall ist , im zweiten Fall , in beiden Fällen also .

Wenn umgekehrt gilt, so bedeutet dies oder . Im ersten Fall ist und , im zweiten Fall und . Also ist und und somit ist .


Aufgabe (2 (0.5+0.5+0.5+0.5) Punkte)

Wir betrachten die Wertetabelle

  1. Berechne .
  2. Berechne .
  3. Berechne .
  4. Berechne .


Lösung

Es ist


Aufgabe (3 Punkte)

Beweise durch Induktion die folgende Formel für .


Lösung

Beim Induktionsanfang ist , daher besteht die Summe links nur aus einem Summanden, nämlich der , und daher ist die Summe . Die rechte Seite ist , sodass die Formel für stimmt.

Für den Induktionsschritt setzen wir voraus, dass die Formel für ein gilt, und müssen zeigen, dass sie auch für gilt. Dabei ist beliebig. Es ist

Dabei haben wir für die zweite Gleichheit die Induktionsvoraussetzung verwendet. Der zuletzt erhaltene Term ist die rechte Seite der Formel für , also ist die Formel bewiesen.


Aufgabe (2 Punkte)

Erläutere das Beweisprinzip der vollständigen Induktion.


Lösung

Mit dem Beweisprinzip der vollständigen Induktion werden Aussagen bewiesen, die von den natürlichen Zahlen abhängen. Man beweist zuerst die Aussage . Ferner zeigt man, dass man für alle aus der Gültigkeit von auf die Gültigkeit von schließen kann. Daraus folgt die Gültigkeit von für alle .


Aufgabe (5 (3+2) Punkte)

Wir behaupten, dass die Summe von vier aufeinanderfolgenden ungeraden Zahlen durch teilbar ist.

  1. Beweise diese Aussage mit vollständiger Induktion.
  2. Beweise diese Aussage ohne vollständige Induktion.


Lösung

Eine ungerade natürliche Zahl besitzt die Form mit einer natürlichen Zahl . Vier aufeinanderfolgende Zahlen sind damit .

  1. Induktionsbeweis: Für geht es um

    was durch teilbar ist. Es sei nun die Vierersumme der aufeinanderfolgenden ungeraden Zahlen beginnend mit ein Vielfaches der . Es ist zu zeigen, dass dies auch für die Vierersumme der aufeinanderfolgenden ungeraden Zahlen beginnend mit gilt. Es ist

    sodass diese Zahl wieder ein Vielfaches der ist.

  2. Es ist
    sodass ein Vielfaches der vorliegt.


Aufgabe (4 Punkte)

Bestimme die Hintereinanderschaltungen und für die Abbildungen , die durch

definiert sind.


Lösung Hintereinanderschaltung/Polynomiales Beispiel/3/Aufgabe/Lösung


Aufgabe (1 Punkt)

Bestimme


Lösung

Das ist , da sich beim Inversennehmen Zähler und Nenner vertauschen und fünfmal das Inverse genommen wird.


Aufgabe (5 Punkte)

Beweise die allgemeine binomische Formel.


Lösung

Wir führen Induktion nach . Für steht einerseits und andererseits . Es sei die Aussage bereits für bewiesen. Dann ist


Aufgabe (1 Punkt)

Skizziere den Graphen der Funktion


Lösung Skizze/-Betrag-x/Aufgabe/Lösung


Aufgabe (2 Punkte)

Ein Apfelverkäufer verkauft Äpfel für Euro. Ein zweiter Apfelverkäufer verkauft Äpfel für Euro. Welches Angebot ist günstiger?


Lösung

Wir bestimmen, wie viel die gleiche Menge an Äpfeln bei den beiden Verkäufern kostet. Um die beiden Angebote vergleichen zu können, berechnen wir den jeweiligen Preis für

Äpfel. Beim ersten Verkäufer muss man dafür

Euro bezahlen. Beim zweiten Verkäufer muss man dafür

Euro bezahlen. Das zweite Angebot ist also günstiger.


Aufgabe (3 Punkte)

Eine Bahncard , mit der man ein Jahr lang Prozent des Normalpreises einspart, kostet Euro und eine Bahncard , mit der man ein Jahr lang Prozent des Normalpreises einspart, kostet Euro. Für welchen Jahresgesamtnormalpreis ist keine Bahncard, die Bahncard oder die Bahncard die günstigste Option?


Lösung

Es sei der Gesamtnormalpreis. Mit BC25 hat man die Kosten

und mit BC50 hat man die Kosten

Die Bedingung

führt auf

Die Bedingung

führt auf

Die Bedingung

führt auf

also

Also ist für keine Bahncard die günstigste Option, für ist die BC25 die günstigste Option und für ist die BC50 die günstigste Option.


Aufgabe (3 Punkte)

Führe die ersten drei Schritte des babylonischen Wurzelziehens zu mit dem Startwert durch (es sollen also die Approximationen für berechnet werden; diese Zahlen müssen als gekürzte Brüche angegeben werden).


Lösung

Die Formel für lautet

Daher ist

Somit ist

Schließlich ist


Aufgabe (3 Punkte)

Es sei ein angeordneter Körper und es seien und konvergente Folgen in . Zeige, dass die Summenfolge ebenfalls konvergent mit

ist.


Lösung

Es seien bzw. die Grenzwerte der beiden Folgen. Sei vorgegeben. Wegen der Konvergenz der ersten Folge gibt es zu

ein derart, dass für alle die Abschätzung

gilt. Ebenso gibt es wegen der Konvergenz der zweiten Folge zu ein derart, dass für alle die Abschätzung

gilt. Sei

Dann gilt für alle (unter Verwendung der Dreiecksungleichung) die Abschätzung


Aufgabe (3 Punkte)

Entscheide, ob die Folge

in konvergiert und bestimme gegebenenfalls den Grenzwert.


Lösung

Für kann man die Folge (durch Erweiterung mit ) als

schreiben. Folgen vom Typ und sind Nullfolgen. Aufgrund der Summenregel für konvergente Folgen konvergiert der Zähler gegen und der Nenner gegen , sodass nach der Quotientenregel die Folge insgesamt gegen konvergiert.


Aufgabe (5 Punkte)

Untersuche die Folge

auf Konvergenz.


Lösung

Wir behaupten, dass die Folge gegen konvergiert. Zunächst haben wir die Abschätzung

Es sei nun fixiert. Wir zeigen, dass die Folgenglieder für hinreichend groß oberhalb von liegen. Es ist

und somit gilt für hinreichend groß die Abschätzung

Für solche ist dann auch

Also hat man für diese Folgenglieder die Abschätzung

Daraus folgt die Behauptung.


Aufgabe (2 Punkte)

Begründe geometrisch, dass die Wurzeln , , als Länge von „natürlichen“ Strecken vorkommen.


Lösung

Dies geht mit der Spirale des Theodorus. Wenn man die (bereits konstruierte) Quadratwurzel als eine Kathete eines rechtwinkligen Dreiecks nimmt mit einer zweiten Kathete der Länge , so erhält man eine Hypotenuse der Länge .


Aufgabe (6 Punkte)

Beweise den Satz von Bolzano-Weierstraß.


Lösung

Die Folge sei durch

beschränkt. Wir definieren zuerst induktiv eine Intervallhalbierung derart, dass in den Intervallen unendlich viele Folgenglieder liegen. Das Startintervall ist . Es sei das -te Intervall bereits konstruiert. Wir betrachten die beiden Hälften

In mindestens einer der Hälften liegen unendlich viele Folgenglieder, und wir wählen als Intervall eine Hälfte mit unendlich vielen Gliedern. Da sich bei diesem Verfahren die Intervalllängen mit jedem Schritt halbieren, liegt eine Intervallschachtelung vor. Als Teilfolge wählen wir nun ein beliebiges Element

mit . Dies ist möglich, da es in diesen Intervallen unendlich viele Folgenglieder gibt. Diese Teilfolge konvergiert nach Aufgabe 7.4 (Analysis (Osnabrück 2021-2023)) gegen die durch die Intervallschachtelung bestimmte Zahl .


Aufgabe (2 (0.5+1+0.5) Punkte)

a) Berechne

b) Bestimme das inverse Element zu

c) Welchen Abstand hat aus Teil (b) zum Nullpunkt?


Lösung

a) Es ist

b) Das inverse Element zu ist , also ist

c) Der Abstand von zum Nullpunkt ist , daher ist der Abstand von zum Nullpunkt gleich .