Kurs:Differentialgeometrie (Osnabrück 2023)/Orientierung/Anhang
Es seien und zwei zweidimensionale reelle Vektorräume mit den Basen bzw. . Es sei eine lineare Abbildung
gegeben mit und . Die Matrix, die diese lineare Abbildung beschreibt, ergibt sich, indem man die Koordinaten des Bildvektors des -ten Basisvektors als -te Spalte schreibt. Bei der gegebenen Nummerierung ergibt sich also die Matrix
und ihre Determinante ist . Wenn man hingegen die Reihenfolge von und vertauscht (also mit der Basis und arbeitet), so ist die beschreibende Matrix
mit der Determinante . Abhängig von der gewählten Basis kann also die Determinante mal positiv, mal negativ sein (bei einem Endomorphismus kann das nicht passieren, wenn man vorne und hinten stets die gleiche Basis nimmt).
Im Folgenden ist es wichtig, dass man unter einer Basis nicht die Menge der Basisvektoren , sondern das geordnete Tupel der Basisvektoren versteht.
Es sei ein endlichdimensionaler reeller Vektorraum. Man nennt zwei Basen und orientierungsgleich, wenn die Determinante ihrer Übergangsmatrix positiv ist.
Diese Relation zwischen Basen ist eine Äquivalenzrelation, und zwar eine, bei der es nur zwei Äquivalenzklassen (genannt Orientierungen oder Orientierungsklassen) gibt (außer beim Nullraum).
Es sei ein endlichdimensionaler reeller Vektorraum. Eine Orientierung auf ist eine Äquivalenzklasse von Basen von unter der Äquivalenzrelation, orientierungsgleich zu sein.[1]
Es ist einfach, zu bestimmen, ob zwei Basen die gleiche oder die entgegengesetzte Orientierung besitzen, es macht aber keinen Sinn, die einzelnen Orientierungen zu benennen.
Es sei ein endlichdimensionaler reeller Vektorraum. Er heißt orientiert, wenn auf ihm eine Orientierung erklärt ist.
Ein Vektorraum wird dadurch orientiert, indem man beispielsweise sagt, dass die Orientierung tragen möge, die durch die Basis repräsentiert wird. Der Standardraum trägt, wenn nichts anderes gesagt wird, die sogenannte Standardorientierung, die durch die Standardbasis repräsentiert wird.
Es seien und zwei endlichdimensionale orientierte reelle Vektorräume. Eine bijektive lineare Abbildung
heißt orientierungstreu, wenn für jede Basis , die die Orientierung auf repräsentiert, die Bildvektoren die Orientierung auf repräsentieren.
Es genügt, diese Eigenschaft für eine einzige, die Orientierung repräsentierende Basis nachzuweisen, siehe Aufgabe 13.4.
Bei einem eindimensionalen reellen Vektorraum (einer Geraden) ist eine Orientierung einfach durch einen einzigen Vektor gegeben, d.h. es wird einfach eine der beiden „Halbgeraden“ als „positiv“ ausgezeichnet. Dies ist wiederum äquivalent zu einer Identifizierung von mit , der mit der Standardorientierung versehen ist, bei der positiv ist. Unter Bezug auf das Dachprodukt kann man generell die Orientierung auf einem reellen Vektorraum auf die Orientierung einer Geraden zurückführen, wie die folgende Aussage zeigt.
Es sei ein endlichdimensionaler reeller Vektorraum der Dimension .
Dann entsprechen durch die Zuordnung
die Orientierungen auf den Orientierungen auf .
Es seien und zwei Basen von mit der Beziehung
Dann gilt nach Korollar Anhang 2.4
woraus die Wohldefiniertheit der Abbildung und die Aussage folgt.
- ↑ Bei einem -dimensionalen Vektorraum, also dem Nullraum, gibt es nur die leere Basis. Es ist aber dennoch sinnvoll, von zwei Orientierungen auf dem Nullraum zu sprechen, die wir durch und repräsentieren.