Kurs:Funktionalanalysis/Skalarproduktnorm
Einführung
BearbeitenEine Skalarproduktnorm, Innenproduktnorm oder Hilbertnorm ist in der Mathematik eine von einem Skalarprodukt induzierte (abgeleitete) Norm. In einem endlichdimensionalen reellen oder komplexen Vektorraum mit dem Standardskalarprodukt entspricht die Skalarproduktnorm gerade der euklidischen Norm.
Prähilbertraum und Norm
BearbeitenAllgemein besitzt jeder Prähilbertraum eine zugeordnete Skalarproduktnorm und ist mit dieser Norm ein normierter Raum. Eine Norm ist dabei genau dann von einem Skalarprodukt induziert, wenn sie die Parallelogrammgleichung erfüllt.
Cauchy-Schwarzsche Ungleichung
BearbeitenJede Skalarproduktnorm erfüllt weiterhin die Cauchy-Schwarz-Ungleichung und ist invariant unter unitären Transformationen.
Klassifikation topologischer Räume
Bearbeiten
Definition: Prähilbertraum
BearbeitenIst ein Vektorraum über den Körper der reellen oder komplexen Zahlen und ein Skalarprodukt auf , dann ist ein Skalarproduktraum oder Prähilbertraum. Die von diesem Skalarprodukt induzierte Norm ist für einen Vektor dann definiert als
- ,
also die Wurzel aus dem Skalarprodukt des Vektors mit sich selbst.
Bemerkung: Wohldefiniertheit
BearbeitenDiese Definition ist wohldefiniert, da das Skalarprodukt eines Vektors mit sich selbst reell und nichtnegativ ist.
Zusammenhang - Topologische Räume
BearbeitenDiese Norm heißt auch Skalarproduktnorm,[1] Innenproduktnorm[2] oder Hilbertnorm[3] und wird in reellen Skalarprodukträumen gelegentlich als (allgemeine) euklidische Norm bezeichnet.[4][5] Mit der Skalarproduktnorm ist der Vektorraum ein normierter Raum . Weiterhin ist mit der von der Norm induzierten Metrik ein metrischer Raum und mit der Normtopologie ein topologischer Raum .
Beispiele
BearbeitenSkalarprodukte können nicht nur auf den grundlegenden endlichdimensionalen Vektorräumen, wie dem oder definiert werden. Wichtige Beispiele für Skalarproduktnormen werden nun genannt.
Euklidische Norm
BearbeitenDie euklidische Norm auf dem euklidischen Raum der endlichdimensionalen Vektoren,
Skalarproduktnorm auf Folgenräumen
BearbeitenDie ℓ2-Norm auf dem Raum ℓ2 der quadratisch summierbaren Folgen,
L2-Norm auf Vektorräume von Funktionen
BearbeitenDie L2-Norm auf dem Raum L2 der quadratisch Lebesgue-integrierbaren Funktionen,
Sobolev-Norm
BearbeitenDie Sobolev-Norm auf dem Sobolev-Raum Hs der Funktionen, deren gemischte schwache Ableitungen bis zum Grad quadratisch Lebesgue-integrierbar sind,
Frobenius-Norm
BearbeitenDie Frobenius-Norm auf dem Raum der Matrizen,
Hilbert-Schmidt-Norm
BearbeitenDie Hilbert-Schmidt-Norm auf dem Raum der Hilbert-Schmidt-Operatoren.
Eigenschaften
Bearbeiten- Die durch das Skalarprodukt induzierte Abbildung ist eine Norm.
- In einem (Prä-)Hilbertraum gilt die Parallelogrammgleichung
- In einem (Prä-)Hilbertraum gilt der Satz des Pythagoras
Normeigenschaften
BearbeitenJede Skalarproduktnorm erfüllt die drei Normaxiome
- (N1) Definitheit,
- (N2) absolute Homogenität und
- (N3) Subadditivität bzw. Dreiecksungleichung.
Beweis N1 - Definitheit
BearbeitenDie Definitheit folgt für aus der Eindeutigkeit der Nullstelle der Wurzelfunktion über
- ,
Beweis N2 - Absolute Homogenität
BearbeitenDie absolute Homogenität folgt für und unter Ausnutzung der Bilinearität über dem Körper bzw. Sesquilinearität über mit
Beweis: N3 - Dreiecksungleichung
BearbeitenDie Dreiecksungleichung (oder Subadditivität) folgt für über die Cauchy-Schwarz-Ungleichung (siehe den folgenden Abschnitt) aus
Abschätzung der Norm
BearbeitenBemerkung zur Abschätzung
BearbeitenFür die Abschätzung wurde ferner verwendet, dass der Realteil einer komplexen Zahl durch den Betrag des Realteils nach oben abgeschätzt werden kann.
wobei der Realteil und Imaginärteil in der komplexen Zahlebene betragsmäßig den Katheden eines rechtwickligen Dreiecks entspricht und der Länge der Hypothenuse.
Bemerkung Dreiecksungleichung
BearbeitenAbschließend wird auf die Ungleichung der nicht-negativen Terme noch die Wurzel angewendet und man erhält mit Cauchy-Schwarz die Gültigkeit der Dreiecksungleichung für die vom Skalarprodukt induzierten Norm.
Aufgabe für Lernende
Bearbeiten- Formulieren Sie den Satz des Thales in einer Skalarprodukt-Notation in einem Prähilbertraum und beweisen Sie den Satz. Starten Sie mit einem rechtwickligen Dreieck mit den Katheten mit und der Hypotenuse .
- Formulieren Sie den Höhensatz in einer Skalarprodukt-Notation in einem Prähilbertraum und beweisen Sie den Satz. Starten Sie mit einem rechtwickligen Dreieck mit den Katheten mit und der Hypotenuse .
- Tragen Sie die Höhe und die Hypothenusenabschnitte ein.
- Stellen Sie durch die Vektor .
- Welche Eigenschaften der Orthogonalität finden Sie in Ihrer Skizze.
- Welche Beweise für den Höhensatz in der Ebene kennen Sie? Können diese auf Prähilberträume analog übertragen werden?
Parallelogrammgleichung
BearbeitenFür eine Skalarproduktnorm gilt zudem die Parallelogrammgleichung
für alle Vektoren .
Satz von Jordan - von Neumann
BearbeitenUmgekehrt gilt nach dem Satz von Jordan-von Neumann: erfüllt eine Norm die Parallelogrammgleichung, so ist sie von einem Skalarprodukt induziert. Dieses Resultat erhält man durch eine Polarisationsformel, bei reellen Vektorräumen zum Beispiel durch
- .
Unitäre Invarianz
BearbeitenEine Skalarproduktnorm ist weiterhin invariant unter unitären Transformationen. Ist ein unitärer Operator (im endlichdimensionalen Fall eine unitäre bzw. orthogonale Matrix) von in einen weiteren Skalarproduktraum mit zugehöriger Norm, dann gilt
- ,
Beweis für die Norminvaranz
BearbeitenDie Gleichung folgt unmittelbar aus der folgenden Gleichungskette:
Dabei ist der zu adjungierte Operator. Im endlichdimensionalen Fall ist das dann die adjungierte bzw. transponierte Matrix).
Geometrischer Bezug
BearbeitenEine Skalarproduktnorm ändert ihren Wert somit unter unitären Transformationen des Vektors nicht. Im reellen, endlichdimensionalen Fall sind solche Transformationen beispielsweise Drehungen des Vektors um den Nullpunkt.
Cauchy-Schwarz-Ungleichung
BearbeitenEine Skalarproduktnorm erfüllt für alle Vektoren die Cauchy-Schwarz-Ungleichung
- ,
wobei Gleichheit genau dann gilt, wenn und linear abhängig sind.
Reeler Fall
BearbeitenIm reellen Fall können die Betragsstriche auch weglassen werden. Aus der Cauchy-Schwarz-Ungleichung folgt dann unmittelbar
- ,
Winkel zwischen Vektoren
BearbeitenMit der obigen Ungleichung kann man den Winkel zwischen zwei reellen Vektoren über
definieren. Der Winkel liegt damit im Intervall , also zwischen und . Für Winkel zwischen komplexen Vektoren gibt es eine Reihe unterschiedlicher Definitionen.[6]
Orthogonalprojektion von Vektoren
BearbeitenBetrachtet man zwei verschiedene Vektoren , dann kann man die Orthogonalprojektion von auf durch das Skalarprodukt ausdrücken:
Dabei liegt die Projektion von in dem von aufgespannten eindimensionalen Unterraum von
Aufgabe - Strahlensatz
BearbeitenBetrachten Sie die normierten Vektoren und mit als Vektoren auf dem Einheitskreis und betrachten Sie die
Aufgaben - Orthogonalprojektion
BearbeitenBetrachten Sie zunächst die Orthogonalprojektion von einem Vektor auf einen zweiten Vektor im .
Aufgabe 1 - Orthogonalprojektion
BearbeitenBerechnen Sie die Orthogonalprojektion eines Vektors auf einen Vektors mit Hilfe des Skalarpdoktes U! Betrachten Sie dazu zunächst die Abbildung im und wählen Sie im einfachen Fall die Vektoren und . Berechnen Sie zunächst die Orthogonalprojekt . Zeigen Sie, dass und senkrecht zueinander stehen.
Aufgabe 2 - Orthogonalprojektion
BearbeitenÜbertragen Sie das Vorgehen aus dem auf die stetigen Funktionen mit kompaktem Träger nach und berechnen Sie die Orthogonalprojektion von auf für die beiden Vektoren mit:
(Orthogonale Funkltion) Berechnen Sie zunächst die Orthonalprojektion von auf und zeigen Sie, dass orthogonal orthogonal zu ! Berechnen Sie das Skalarprodukt mit:
Dabei liegt die Projektion von in dem von aufgespannten eindimensionalen Unterraum von
(Normalisierung) Normalisieren Sie dann die beiden Vektoren zu und zu , (also ) und mit gilt
Vorbemerkung zu Aufgabe 3
BearbeitenAndere Skalarprodukte kann man im reellen Fall durch jede symmetrische und positiv definite Matrix über
erzeugen. Dies ist auch im komplexen Fall durch jede positiv definite hermitesche Matrix über
möglich.
Aufgabe 3 - Skalarprodukt mit vorgegebenen Eigenschaften
BearbeitenGeben Sie ein Skalarprodukt auf dem an, bei dem die Vektoren und senkrecht aufeinander stehen - also gilt. Verwenden Sie zunächst die folgende symmetrische Matrix für das gesuchte Skalarprodukt :
Satz des Pythagoras
BearbeitenAllgemein werden zwei Vektoren orthogonal genannt, wenn ihr Skalarprodukt ist. Für orthogonale Vektoren gilt dann der Satz des Pythagoras für Skalarprodukträume
- .
Erweiterung von Pythagoras
BearbeitenDer Satz des Pythagoras kann auch auf eine endliche Summe paarweise orthogonaler Vektoren erweitert werden und es gilt dann
- .
Die entsprechende Erweiterung auf unendlich viele Summanden in einem Hilbertraum ist die Parsevalsche Gleichung (siehe auch Satz des Pythagoras).
Verallgemeinerung
BearbeitenVerzichtet man auf die positive Definitheit des Skalarprodukts, erhält man die folgende Verallgemeinerung. Jede positiv semidefinite hermitesche Sesquilinearform (im reellen Fall symmetrische Bilinearform) induziert für durch
eine Halbnorm.
Hausdorff-Eigenschaft - Trennung von Punkten
BearbeitenMit dieser Halbnorm ist dann ein halbnormierter Raum, der aber im Allgemeinen kein metrischer Raum ist. Durch Restklassenbildung lässt sich aus einer Halbnorm aber eine zugehörige Norm ableiten und so erhält man wieder einen normierten Raum und damit auch einen metrischen und einen topologischen Raum.
Beispiel - Kovarianz
BearbeitenDie Kovarianz ist eine Bilinearform auf dem Raum der Zufallsvariablen mit endlichen zweiten Momenten, und wird zu einem Skalarprodukt auf dem Quotientenraum der Zufallsvariablen, die sich nur durch eine Konstante unterscheiden. Die von diesem Skalarprodukt induzierte Norm ist dann schlicht die Standardabweichung einer Zufallsvariablen.
Literatur
Bearbeiten- Herbert Amann, Joachim Escher: Analysis I. Birkhäuser, Basel 2006, ISBN 3-7643-7755-0.
- Albrecht Beutelspacher: Lineare Algebra. 6. Auflage. Vieweg, 2003, ISBN 3-528-56508-X.
- Bronstein et al.: Taschenbuch der Mathematik. 7. Auflage. Harri Deutsch, 2008, ISBN 978-3-8171-2007-9.
- Harro Heuser: Funktionalanalysis: Theorie und Anwendung. Vieweg, 2006, ISBN 978-3-8351-0026-8.
Einzelnachweise
Bearbeiten- ↑ Kosmol: Optimierung und Approximation. de Gruyter, 2010, S. 100.
- ↑ Heuser: Funktionalanalysis: Theorie und Anwendung. 2006, S. 148.
- ↑ Amann, Escher: Analysis I. 2006, S. 168.
- ↑ Bronstein et al.: Taschenbuch der Mathematik. 2008, S. 368.
- ↑ Beutelspacher: Lineare Algebra. 2003, S. 259.
- ↑ Klaus Scharnhorst: Angles in complex vector spaces. In: Acta Applicandae Math. Band 69, 2001, S. 95–103.
Siehe auch
BearbeitenSeiten-Information
BearbeitenWiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Funktionalanalysis' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Kurs:Funktionalanalysis/Skalarproduktnorm
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.
Wikipedia2Wikiversity
BearbeitenDiese Seite wurde auf Basis der folgenden Wikipedia-Quelle erstellt: