Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil I/Arbeitsblatt 6/kontrolle



Die Pausenaufgabe

Auf der linken Tafel ist eine gewisse Anzahl von Äpfeln angemalt. Diese Anzahl soll durch eine Menschenkette in eine Strichfolge auf die rechte Tafel übertragen werden, wobei nur eine Person die Äpfel sehen darf. Es darf nicht gesprochen werden und niemand darf sich von der Stelle bewegen. Ebensowenig darf auf Zählkenntnisse Bezug genommen werden.




Übungsaufgaben

Man mache sich klar, in welcher Weise die in der Vorlesung angeführten Diagramme Abbildungen darstellen.



Erstelle eine Wertetabelle, die für jede natürliche Zahl von bis ausgibt, mit wie vielen Eurozahlen die Zahl minimal darstellbar ist.



  1. Es sei die Menge aller (lebenden oder verstorbenen) Menschen. Untersuche die Abbildung

    die jedem Menschen seine Mutter zuordnet, auf Injektivität und Surjektivität.

  2. Welche Bedeutung hat die Hintereinanderschaltung ?
  3. Wie sieht es aus, wenn man die gleiche Abbildungsvorschrift nimmt, sie aber auf die Menge aller Einzelkinder und auf die Menge aller Mütter einschränkt?
  4. Seien Sie spitzfindig (evolutionsbiologisch oder religiös) und argumentieren Sie, dass die Abbildung in (1) nicht wohldefiniert ist.



  1. Es sei die Menge aller (lebenden oder verstorbenen) Mütter und die Menge aller (lebenden oder verstorbenen) Menschen. Untersuche die Abbildung

    die jeder Mutter ihr erstgeborenes Kind zuordnet, auf Injektivität und Surjektivität.

  2. Wie sieht es aus, wenn man die gleiche Abbildungsvorschrift nimmt, die Menge aber durch die Menge der mütterlicherseits erstgeborenen Kinder ersetzt?
  3. Wie sieht es aus, wenn man die gleiche Abbildungsvorschrift nimmt, die Menge aber durch die Menge der mütterlicher- oder väterlicherseits erstgeborenen Kinder ersetzt?



Wir betrachten die Mengen

und die Abbildungen und , die durch die Wertetabellen

und

gegeben sind.

  1. Erstelle eine Wertetabelle für .
  2. Sind die Abbildungen , , injektiv?
  3. Sind die Abbildungen , , surjektiv?



Betrachte auf der Menge die Abbildung

die durch die Wertetabelle

gegeben ist. Berechne , also die -te Hintereinanderschaltung (oder Iteration) von mit sich selbst.



Der Pferdepfleger hat einen Korb voller Äpfel und geht auf die Weide, um die Äpfel an die Pferde zu verteilen. Danach geht jedes Pferd in seine Lieblingskuhle und macht dort einen großen Pferdeapfel. Modelliere den Vorgang mit geeigneten Mengen und Abbildungen. Man mache sich die Begriffe injektiv und surjektiv an diesem Beispiel klar. Kann die Gesamtabbildung surjektiv sein, wenn es 10 Äpfel, 6 Pferde und 8 Kuhlen gibt?



Es sei eine endliche Menge und eine Abbildung. Es sei die -fache Hintereinanderschaltung von mit sich selbst. Zeige, dass es natürliche Zahlen mit gibt.



Welche Funktionsvorschriften kennen Sie aus der Schule?



Welche bijektiven Funktionen (oder zwischen Teilmengen von ) kennen Sie aus der Schule? Wie heißen die Umkehrabbildungen?



Bestimme die Hintereinanderschaltungen und für die Abbildungen , die durch

definiert sind.



Es seien Mengen und

Abbildungen mit der Hintereinanderschaltung

Zeige: Wenn injektiv ist, so ist auch injektiv.



Zeige, dass die Menge endlich mit Elementen ist.



Es seien und Mengen und es sei eine bijektive Abbildung. Zeige: Wenn endlich mit Elementen ist, so ist auch endlich mit Elementen.



Es seien und endliche Teilmengen einer Menge . Zeige, dass dann auch die Vereinigung endlich ist.



Mustafa Müller und Heinz Ngolo haben jeweils mit einer Strichliste ihre Fußballbildchen gezählt. Sie wollen wissen, wer mehr Bildchen hat, die Listen sind aber ziemlich lang und beim Zählen kommen sie durcheinander. Mustafa macht den Vorschlag, in der Liste immer vier Striche durch einen Querstrich zusammenzufassen und dann diese Blöcke zu zählen. Heinz sagt, dass das nicht geht, da so Fünferblöcke entstehen und dadurch das Ergebnis verfälscht wird. Was sagt Gabi Hochster?


In der folgenden Aufgabe bezeichnet die Menge und die Menge . Bestimme diese Mengen für die Heinonummierung für die Menge und .


Es seien und zwei Mengen und eine bijektive Abbildung zwischen diesen Mengen. Zeige, dass für jede Teilmenge eine Bijektion vorliegt, und dass ebenso für jede Teilmenge eine Bijektion vorliegt.



Man gebe Beispiele für Abbildungen

derart, dass injektiv, aber nicht surjektiv ist, und dass surjektiv, aber nicht injektiv ist.




Aufgaben zum Abgeben

Wir betrachten die Mengen

und die Abbildungen und , die durch die Wertetabellen

und

gegeben sind.

  1. Erstelle eine Wertetabelle für .
  2. Sind die Abbildungen , , injektiv?
  3. Sind die Abbildungen , , surjektiv?



  1. Kann eine konstante Abbildung bijektiv sein?
  2. Ist die Hintereinanderschaltung einer konstanten Abbildung mit einer beliebigen Abbildung (also die konstante Abbildung zuerst) konstant?
  3. Ist die Hintereinanderschaltung einer beliebigen Abbildung mit einer konstanten Abbildung (also die konstante Abbildung zuletzt) konstant?



Betrachte die Abbildung

Ist injektiv, surjektiv bzw. bijektiv?



Es seien die reellen Zahlen und die nichtnegativen reellen Zahlen. Bestimme für die folgenden Abbildungen, ob sie injektiv und ob sie surjektiv sind.



Es seien Mengen und

Abbildungen mit der Hintereinanderschaltung

Zeige: Wenn surjektiv ist, so ist auch surjektiv.



<< | Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)