Kurs:Grundkurs Mathematik (Osnabrück 2018-2019)/Teil I/Vorlesung 9
- Die Multiplikation auf den natürlichen Zahlen
Zur Definition der Multiplikation verwenden wir wieder das Prinzip, dass man mit natürlichen Zahlen zählen kann. Die Addition haben wir bereits zur Verfügung und insbesondere können wir eine natürliche Zahl mit sich selbst addieren. Wir können auch Summen der Form
benutzen und können dabei, wegen der Assoziativität der Addition, auf Klammern verzichten. Die Anzahl der Summanden ist dabei eine wohldefinierte natürliche Zahl. Dies nehmen wir zur Grundlage für die Multiplikation.[1]
Das Produkt zweier natürlicher Zahlen ist definiert als die -fache Summe der Zahl mit sich selbst.
Wichtig ist hier, dass die Anzahl der Summanden angibt, also wie oft zu nehmen ist, und nicht die Anzahl der Additionen (die Anzahl des Pluszeichens), die dabei auszuführen sind. Diese Anzahl ist um eins kleiner. Es spricht aber auch einiges dafür, dass man von ausgeht und dazu dann -fach die Operation durchführt. Dann hat man
und -fach den gleichen Prozess. Die beiden Zahlen und heißen Faktoren, das Ergebnis heißt das Produkt, die Verknüpfung heißt Multiplikation.
Wenn man die Addition beherrscht, so ist es einfach, die Multiplikation auszuführen und eine Tabelle für kleine Zahlen aufzustellen. Die Multiplikationstabelle für zwei Zahlen zwischen und , das sogenannte kleine Einmaleins lässt sich so erstellen (auch in anderen Systemen). Man kann dann grundsätzlich sämtliche Multiplikationen im Zehnersystem darauf zurückführen, was im schriftlichen Multiplizieren ausgenutzt wird, siehe die sechzehnte Vorlesung. Um große Zahlen effektiv miteinander multiplizieren zu können, muss man das kleine Einmaleins auswendig kennen. Eigentlich sollte man die aus dem kleinen Einmaleins herausnehmen, da die Zehnerreihe sich im Dezimalsystem auf kleinere Rechungen zurückführen lässt.
Für die soeben eingeführte Multiplikation möchte man die vertrauten Eigenschaften wie beispielsweise die Kommutativität etablieren. Dies geschieht in folgendem Lemma.
Für die Multiplikation der natürlichen Zahlen (mit der in der Definition 9.1 festgelegten Multiplikation)
gelten folgende Aussagen.
- Es gilt
für alle .
- Es gilt
für alle , d.h. ist das neutrale Element für die Multiplikation.
- Es ist
und
für alle .
- Die Multiplikation ist kommutativ.
- Für beliebige
gilt
(Distributivgesetz).
- Die Multiplikation ist assoziativ.
- Die zweite Gleichung ist klar, da unabhängig davon, wie oft die mit sich selbst addiert wird, stets herauskommt. Die erste Gleichung kann man als eine Konvention oder auch als Teil der Definition ansehen: Eine Summe, in der überhaupt keine Zahl vorkommt (die leere Summe), ist als zu interpretieren.
- Die erste Gleichung ist klar, der Ausdruck besagt einfach, dass die Zahl einmal dasteht. Die zweite Gleichung bedeutet, dass die -fache Addition der mit sich selbst gleich ist. Dies zeigen wir durch Induktion nach , wobei der Induktionsanfang
(für
)
klar ist. Es sei die Aussage also schon für bewiesen. Der Unterschied zwischen
und
besteht darin, dass im zweiten Fall einmal mehr dasteht. Somit ist
- Die linke Gleichung ergibt sich unmittelbar aus der Definition. Die rechte Gleichung ergibt sich aus
- Die Kommutativität beweisen wir durch Induktion nach , und zwar beweisen wir die Behauptung
für alle . Der Fall ist klar, da dann beidseitig steht. Es sei die Gesamtaussage also für ein bestimmtes und beliebiges bereits bewiesen. Dann ist unter Verwendung von (3) und der Induktionsvoraussetzung
- Das Distributivgesetz
beweisen wir durch Induktion nach für beliebige . Der Fall ist klar, da beidseitig rauskommt. Unter Verwendung der Induktionsvoraussetzung und Teil (3) ergibt sich
- Das Assoziativitätsgesetz beweisen wir durch Induktion nach dem ersten Faktor
(wobei der Induktionsanfang wieder klar ist)
unter Verwendung des Distributivgesetzes und Teil (3).
Es gilt insbesondere
und die rekursive Beziehung
Diese Eigenschaft nennen wir die Anreihungsregel, sie ist ein Spezialfall des Distributivgesetzes. Ihre inhaltliche Bedeutung ist, dass sich die Anzahl der Elemente in einer Produktmenge (Tabelle) mit Reihen und Spalten um erhöht, wenn man eine zusätzliche Reihe anlegt. Diese beiden Eigenschaften legen bereits die Multiplikationsverknüpfung eindeutig fest.
Es seien und zwei Verknüpfungen auf , die beide diese Eigenschaften erfüllen. Wir müssen
für alle zeigen. Wir führen Induktion nach . Der Induktionsanfang ist klar, da wegen der ersten charakteristischen Eigenschaft
ist. Es sei die Aussage für ein gewisses schon bewiesen. Dann ist unter Verwendung der Induktionsvoraussetzung und der zweiten charakteristischen Eigenschaft
Die folgende Eigenschaft heißt Integritätseigenschaft.
Das Produkt zweier natürlicher Zahlen ist nur dann gleich , wenn einer der Faktoren ist.
Wir zeigen, dass mit auch das Produkt von verschieden ist. Das Produkt ist
und hier steht mindestens ein Summand. Aus Lemma 8.13 und folgt, dass diese Summe nicht ist.
Die folgende Eigenschaft heißt Kürzungsregel.
Aus einer Gleichung mit und mit folgt
.
Wir führen Induktion nach . Bei ist nach Lemma 9.2 (1). Also ist
und wegen folgt mit Lemma 9.4 daraus . Es sei die Aussage für ein (und beliebige und ) bewiesen. Die Aussage ist für den Nachfolger zu zeigen. Die Bedingung
kann bei wegen Lemma 9.4 nicht gelten. Also ist ein Nachfolger, sagen wir . Somit ist
Aus der Abziehregel folgt
und aus der Induktionsvoraussetzung folgt
also
- Die Anzahl der Produktmenge
Es seien und endliche Mengen mit bzw. Elementen.
Dann besitzt die Produktmenge genau Elemente.
Wir führen Induktion über , also die Anzahl von . Wenn ist, so ist leer und damit ist auch die Produktmenge leer, hat also ebenfalls Elemente, was nach Lemma 9.2 (1) mit dem Produkt übereinstimmt. Dies sichert den Induktionsanfang. Wenn ist, so besteht aus genau einem Element, sagen wir , und alle Elemente der Produktmenge haben die Form mit diesem einen und einem beliebigen . Somit ist
eine bijektive Abbildung und hat genau so viele Elemente wie , nämlich . Dies stimmt nach Lemma 9.2 (2) mit dem Produkt überein. Es sei nun die Aussage für alle Mengen mit Elementen (und beliebige endliche Mengen ) bewiesen und es liege eine -elementige Menge vor. Es sei ein fixiertes Element und wir betrachten die disjunkte Zerlegung
Die Menge besitzt dann Elemente, sodass wir auf diese Menge die Induktionsvoraussetzung anwenden können. Ferner ist
und diese Vereinigung ist disjunkt (die erste Komponente eines Paares ist entweder oder nicht ). Daher ist nach Satz 8.14 die Anzahl von gleich der Summe der Anzahlen der beiden Bestandteile, also nach der Induktionsvoraussetzung, dem einelementigen Spezialfall und Lemma 9.2 (3) gleich
Wir geben noch einen zweiten Beweis für die vorstehende Aussage.
Wir behaupten, dass die Abbildung[2]
bijektiv ist. Zum Beweis der Surjektivität sei vorgegeben. Dieses (ganzzahlige) Intervall kann man in die disjunkten Intervalle
unterteilen. Das Element gehört somit zu einem dieser Intervalle, d.h. es gibt ein mit
mit zwischen und . Dann ist
mit einem zwischen und und gehört somit zum Bild. Zum Beweis der Injektivität seien
gegeben, die auf das gleiche Element abbilden. Es gilt also
Da und beide zu gehören, sind die Summen jeweils maximal gleich bzw. . Daher können die Zahlen nur dann gleich sein, wenn
und dann nach der Abziehregel auch
ist.
- Potenzen
Zu einer natürlichen Zahl und einer natürlichen Zahl nennt man die -fache Multiplikation von mit sich selbst
( Faktoren) die -te Potenz von . Sie wird mit bezeichnet.
Die Zahl heißt in diesem Zusammenhang die Basis der Potenz und der Exponent. Bei ist dies als
zu verstehen. Dies gilt auch für , also , wobei man hier häufig auf eine Festlegung verzichtet. Für positive Exponenten ist jedenfalls
Wie gesagt, der Exponent bestimmt die Anzahl der Faktoren
die Anzahl der auszuführenden Multiplikationen ist um eins kleiner. Man kann aber auch von ausgehen und die Potenz als
auffassen.
Bei fixiertem Exponenten bilden die Potenzen
die Menge aller -ten Potenzen. Bei ist das die Menge der Quadratzahlen, bei die Menge der Kubikzahlen. Bei fixierter Basis bilden die Potenzen
die Menge aller -er Potenzen, also alle Zweierpotenzen, alle Dreierpotenzen, u.s.w.
Als Rechenregeln für das Potenzieren halten wir die folgenden Eigenschaften fest.
Eine Zahl der Form mit heißt Quadratzahl.
- Fußnoten
- ↑ Man beachte, dass hier die erste Zahl angibt, wie oft die zweite Zahl mit sich selbst zu addieren ist. Bei der Definition der Addition gibt gemäß unserer Definition die zweite Zahl an, wie oft von der ersten Zahl ausgehend der Nachfolger zu nehmen ist. Bei der Potenzierung gibt wiederum die zweite hochgestellte Zahl an, wie oft die erste untenstehende Zahl mit sich selbst zu multiplizieren ist. Es gibt hier also keine einheitliche Reihenfolge, welche Zahl die Anzahl der Prozesse festlegt. In der Multiplikation soll die erste Zahl die Prozesse zählen, weil man drei Kühe sagt und nicht Kühe drei.
- ↑ Der Ausdruck bezeichnet hier den Vorgänger von , die Subtraktion haben wir noch nicht eingeführt.
<< | Kurs:Grundkurs Mathematik (Osnabrück 2018-2019)/Teil I | >> |
---|