Kurs:Mathematik für Anwender/Teil I/13/Klausur/kontrolle


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Punkte 3 3 1 2 5 3 6 3 7 3 3 5 3 4 9 4 64








Negiere die Aussage „Martina findet alle Jungs im Kurs außer Markus zuckersüß“ durch eine Aussage, in der eine Existenzaussage und eine Oder-Verknüpfung vorkommen.



  1. Wie viele Minuten sind ein Fünftel einer Stunde?
  2. Wie viel Prozent von einer Stunde sind Minuten?
  3. Wie viele Minuten sind einer Stunde?
  4. Wie viel Prozent von einer Stunde ist ein Tag?



Zu je zwei Punkten in der Produktmenge gibt es eine Verbindungsgerade und einen Mittelpunkt, der die Verbindungsstrecke halbiert.

  1. Man gebe zu zwei Punkten und die Koordinaten des Mittelpunktes an.
  2. Es seien in der Produktmenge fünf Punkte gegeben (jeder Punkt habe also ganzzahlige Koordinaten). Zeige, dass mindestens einer der Mittelpunkte ganzzahlige Koordinaten haben muss.
  3. Gilt die Eigenschaft aus (2) auch bei vier Punkten?



Man finde ein Polynom

mit derart, dass die folgenden Bedingungen erfüllt werden.



Beweise die folgende Aussage: Jede beschränkte Folge von reellen Zahlen besitzt eine konvergente Teilfolge (Satz von Bolzano-Weierstraß).



Bestimme, ob die Reihe

konvergiert.



Es sei

eine stetige Funktion , die die Gleichung

für alle erfüllt. Zeige, dass eine Exponentialfunktion ist, d.h. dass es ein mit gibt.



Vergleiche die beiden Zahlen



Man erläutere die Begriffe hinreichende und notwendige Bedingung anhand typischer Beispiele.



Wir betrachten die Standardparabel, also den Graphen zur Funktion

  1. Bestimme die Ableitung und die Tangente von in einem Punkt .
  2. Bestimme den Schnittpunkt einer jeden Tangenten mit der -Achse in Abhängigkeit von . Skizziere die Situation.
  3. Die Parabel, die Tangente und die -Achse begrenzen eine Fläche. Berechne deren Flächeninhalt in Abhängigkeit von .



Bestimme eine Stammfunktion für die Funktion



Man gebe ein Beispiel für einen Körper , eine kommutative Gruppe und eine Abbildung

derart, dass diese Struktur alle Vektorraumaxiome außer

erfüllt.



Aus den Rohstoffen und werden verschiedene Produkte hergestellt. Die folgende Tabelle gibt an, wie viel von den Rohstoffen jeweils nötig ist, um die verschiedenen Produkte herzustellen (jeweils in geeigneten Einheiten).


a) Erstelle eine Matrix, die aus einem Vierertupel von Produkten die benötigten Rohstoffe berechnet.


b) Die folgende Tabelle zeigt, wie viel von welchem Produkt in einem Monat produziert werden soll.

Welche Rohstoffmengen werden dafür benötigt?


c) Die folgende Tabelle zeigt, wie viel von welchem Rohstoff an einem Tag angeliefert wird.

Welche Produkttupel kann man daraus ohne Abfall produzieren?



Es sei ein Körper und es sei ein - dimensionaler Vektorraum. Es sei

eine lineare Abbildung. Zeige, dass genau dann ein Eigenwert von ist, wenn eine Nullstelle des charakteristischen Polynoms ist.