Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 23



Aufwärmaufgaben

Aufgabe

Bestimme das Treppenintegral über zur Treppenfunktion, die durch

gegeben ist.


Aufgabe *

a) Unterteile das Intervall in sechs gleichgroße Teilintervalle.

b) Bestimme das Treppenintegral derjenigen Treppenfunktion auf , die auf der in a) konstruierten Unterteilung abwechselnd die Werte und annimmt.


Aufgabe

Man gebe ein Beispiel für eine Funktion an, die nur endlich viele Werte annimmt, aber keine Treppenfunktion ist.


Aufgabe

Es sei

eine Treppenfunktion und

eine Funktion. Zeige, dass die Hintereinanderschaltung ebenfalls eine Treppenfunktion ist.


Aufgabe

Man gebe ein Beispiel einer stetigen Funktion

und einer Treppenfunktion

derart, dass die Hintereinanderschaltung keine Treppenfunktion ist.


Aufgabe

Berechne das bestimmte Integral

explizit über obere und untere Treppenfunktionen.


Aufgabe

Berechne das bestimmte Integral

explizit über obere und untere Treppenfunktionen.


Aufgabe *

Es sei ein kompaktes Intervall und sei

eine Funktion. Es gebe eine Folge von Treppenfunktionen  mit und eine Folge von Treppenfunktionen  mit . Es sei vorausgesetzt, dass die beiden zugehörigen Folgen der Treppenintegrale konvergieren und dass ihre Grenzwerte übereinstimmen. Zeige, dass dann Riemann-integrierbar ist und dass

gilt.


Aufgabe

Es sei ein kompaktes Intervall und sei

eine Funktion. Zeige, dass die folgenden Aussagen äquivalent sind.

  1. Die Funktion ist Riemann-integrierbar.
  2. Es gibt eine Unterteilung derart, dass die einzelnen Einschränkungen Riemann-integrierbar sind.
  3. Für jede Unterteilung sind die Einschränkungen Riemann-integrierbar.


Aufgabe

Es sei ein kompaktes Intervall und es seien zwei Riemann-integrierbare Funktionen. Beweise die folgenden Aussagen.

  1. Ist für alle , so ist .
  2. Ist für alle , so ist .
  3. Es ist .
  4. Für ist .


Aufgabe

Es sei ein kompaktes Intervall und eine Riemann-integrierbare Funktion. Zeige, dass

gilt.


Aufgabe

Es sei ein kompaktes Intervall und es seien zwei Riemann-integrierbare Funktionen. Zeige, dass auch Riemann-integrierbar ist.




Aufgaben zum Abgeben

Aufgabe (2 Punkte)

Es seien

zwei Treppenfunktionen. Zeige, dass dann auch eine Treppenfunktion ist.


Aufgabe (4 Punkte)

Bestimme das bestimmte Integral

in Abhängigkeit von und explizit über obere und untere Treppenfunktionen.


Aufgabe (4 Punkte)

Berechne das bestimmte Integral

explizit über obere und untere Treppenfunktionen.


Aufgabe (3 Punkte)

Zeige, dass für die Funktion

weder das Unterintegral noch das Oberintegral existiert.


Aufgabe (6 Punkte)

Zeige, dass für die Funktion

das Unterintegral existiert, aber nicht das Oberintegral.


Aufgabe (5 Punkte)

Es sei ein kompaktes Intervall und sei

eine monotone Funktion. Zeige, dass Riemann-integrierbar ist.




<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)