Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Vorlesung 6/latex

\setcounter{section}{6}


\epigraph { In theory, 'theory' and 'praxis' are the same, in praxis they aren't } { }






\zwischenueberschrift{Polynome}

Mathematische Abbildungen werden typischerweise durch einen mathematischen Ausdruck beschrieben, eine Funktionsvorschrift, die angibt, wie aus einer eingegebenen Zahl \zusatzklammer {Stelle, Argument} {} {} eine Zahl als Wert \zusatzklammer {Ergebnis} {} {} der Funktion zu berechnen ist. Wir besprechen nun die am einfachsten gebauten Funktionen, die Polynomfunktionen. Deren Definition erfordert nur die Kenntnis von Addition und Multiplikation in einem Körper.




\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{.} Ein Ausdruck der Form
\mathbedtermdisp { P=a_0 + a_1X+a_2X^2 + \cdots + a_nX^n }
{ mit } { a_i \in K }
{ und } { n \in \N } { } { } { } heißt \definitionswort {Polynom in einer Variablen}{} über $K$.

}

Dabei heißen die Zahlen
\mathl{a_0,a_1 , \ldots , a_n}{} die \stichwort {Koeffizienten} {} des Polynoms. Zwei Polynome sind genau dann gleich, wenn sie in allen ihren Koeffizienten übereinstimmen. Die Polynome mit
\mavergleichskette
{\vergleichskette
{a_i }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{i }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} heißen \stichwort {konstante Polynome} {,} man schreibt sie einfach als $a_0$. Beim \stichwort {Nullpolynom} {} sind überhaupt alle Koeffizienten gleich $0$. Mit dem Summenzeichen kann man ein Polynom kurz als
\mathl{\sum_{ i = 0 }^{ n } a_{ i } X^{ i}}{} schreiben.




\inputdefinition
{}
{

Der \definitionswort {Grad}{} eines von $0$ verschiedenen Polynoms
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {a_0 + a_1X+a_2X^2 + \cdots + a_nX^n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{a_n }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist $n$.

}

Das Nullpolynom bekommt keinen Grad. Der Koeffizient $a_n$, der zum Grad $n$ des Polynoms gehört, heißt \stichwort {Leitkoeffizient} {} des Polynoms. Der Ausdruck
\mathl{a_nX^n}{} heißt \stichwort {Leitterm} {} des Polynoms.

Die Gesamtheit aller Polynome über einem Körper $K$ heißt \stichwort {Polynomring} {} über $K$, er wird mit
\mathl{K[X]}{} bezeichnet. Dabei nennt man $X$ die \stichwort {Variable} {} des Polynomrings.

Zwei Polynome
\mathdisp {P= \sum_{ i = 0 }^{ n } a_{ i } X^{ i} \text{ und } Q=\sum_{ i = 0 }^{ m } b_{ i } X^{ i}} { }
werden komponentenweise miteinander addiert, d.h. die Koeffizienten der Summe
\mathl{P+Q}{} sind einfach die Summe der Koeffizienten der beiden Polynome. Bei
\mavergleichskette
{\vergleichskette
{ n }
{ > }{ m }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sind die \anfuehrung{fehlenden}{} Koeffizienten von $Q$ als $0$ zu interpretieren. Diese Addition ist offenbar assoziativ und kommutativ, das Nullpolynom ist das neutrale Element und das negative Polynom $-P$ erhält man, indem man jeden Koeffizienten von $P$ negiert.

Zwei Polynome lassen sich auch miteinander multiplizieren, wobei man
\mavergleichskettedisp
{\vergleichskette
{ X^n \cdot X^m }
{ \defeq} { X^{n+m} }
{ } { }
{ } { }
{ } { }
} {}{}{} setzt und diese Multiplikationsregel \anfuehrung{distributiv fortsetzt}{,} d.h. man multipliziert \anfuehrung{alles mit allem}{} und muss dann aufaddieren. Die Multiplikation ist also explizit durch folgende Regel gegeben:
\mathdisp {{ \left( \sum_{ i = 0 }^{ n } a_{ i } X^{ i } \right) } \cdot { \left( \sum_{ j = 0 }^{ m } b_{ j } X^{ j } \right) } = \sum_{ k = 0 }^{ n+m } c_{ k } X^{ k } \text{ mit } c_{ k} =\sum_{ r= 0}^{ k } a_{ r } b_{ k - r }} { . }
Für den Grad gelten die beiden folgenden Regeln \auflistungzwei{
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{grad} \, (P+Q) }
{ \leq} { \max \{ \operatorname{grad} \, (P),\, \operatorname{grad} \, (Q) \} }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{grad} \, (P \cdot Q) }
{ =} { \operatorname{grad} \, (P) + \operatorname{grad} \, (Q) }
{ } { }
{ } { }
{ } { }
} {}{}{.} }






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Polynomialdeg5.svg} }
\end{center}
\bildtext {Der Graph einer Polynomfunktion von $\R$ nach $\R$ vom Grad $5$.} }

\bildlizenz { Polynomialdeg5.svg } {} {Geek3} {Commons} {CC-by-sa 3.0} {}

In ein Polynom
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} kann man ein Element
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \stichwort {einsetzen} {,} indem man die Variable $X$ an jeder Stelle durch $a$ ersetzt. Dies führt zu einer Abbildung \maabbeledisp {} {K} {K } {a} {P(a) } {,} die die durch das Polynom definierte \stichwort {Polynomfunktion} {} heißt.

Wenn \mathkor {} {P} {und} {Q} {} Polynome sind, so kann man die Hintereinanderschaltung
\mathl{P \circ Q}{} einfach beschreiben: man muss in $P$ überall die Variable $X$ durch $Q$ ersetzen \zusatzklammer {und alles ausmultiplizieren und aufaddieren} {} {.} Das Ergebnis ist wieder ein Polynom. Man beachte, dass es dabei auf die Reihenfolge ankommt.






\zwischenueberschrift{Division mit Rest}

Bei einem Polynom interessiert man sich für Nullstellen, Wachstumsverhalten, lokale Extrema und dergleichen. Für diese Fragestellungen ist die Division mit Rest wichtig.





\inputfaktbeweis
{Polynomring_über_Körper/Eine_Variable/Division_mit_Rest/Fakt}
{Satz}
{}
{

\faktsituation {}
\faktvoraussetzung {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es seien
\mavergleichskette
{\vergleichskette
{P,T }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Polynome mit
\mavergleichskette
{\vergleichskette
{T }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann gibt es eindeutig bestimmte Polynome
\mavergleichskette
{\vergleichskette
{Q,R }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mathdisp {P = T Q + R \text{ und mit } \operatorname{grad} \, (R) < \operatorname{grad} \, (T) \text{ oder } R = 0} { . }
}
\faktzusatz {}
\faktzusatz {}

}
{

Wir beweisen die Existenzaussage durch Induktion über den \definitionsverweis {Grad}{}{} von $P$. Wenn der Grad von $T$ größer als der Grad von $P$ ist, so ist \mathkor {} {Q=0} {und} {R=P} {} eine Lösung, so dass wir dies nicht weiter betrachten müssen. Bei
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist nach der Vorbemerkung auch
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (TP) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} also ist $T$ ein konstantes Polynom, und damit ist \zusatzklammer {da
\mavergleichskettek
{\vergleichskettek
{T }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und $K$ ein Körper ist} {} {} \mathkor {} {Q=P/T} {und} {R=0} {} eine Lösung. Es sei nun
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P) }
{ = }{ n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und die Aussage für kleineren Grad schon bewiesen. Wir schreiben \mathkor {} {P= a_nX^n + \cdots + a_1X+a_0} {und} {T= b_kX^k + \cdots + b_1X+b_0} {} mit
\mathl{a_n, b_k \neq 0,\, k \leq n}{.} Dann gilt mit
\mavergleichskette
{\vergleichskette
{ H }
{ = }{ { \frac{ a_n }{ b_k } } X^{n-k} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{ P' }
{ \defeq} { P-TH }
{ =} { 0X^n + { \left( a_{n-1} - \frac{a_n}{b_k} b_{k-1} \right) } X^{n-1} + \cdots + { \left( a_{n-k} - \frac{a_n}{b_k} b_{0} \right) } X^{n-k} + a_{n-k-1}X^{n-k-1} + \cdots + a_0 }
{ } { }
{ } { }
} {} {}{.} Dieses Polynom $P'$ hat einen Grad kleiner als $n$ und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt \mathkor {} {Q'} {und} {R'} {} mit
\mathdisp {P' = T Q' + R' \text{ mit } \operatorname{grad} \, (R') < \operatorname{grad} \, (T) \text{ oder } R' = 0} { . }
Daraus ergibt sich insgesamt
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { P'+TH }
{ =} { TQ'+TH+R' }
{ =} { T(Q'+H)+R' }
{ } {}
} {}{}{,} so dass also
\mavergleichskette
{\vergleichskette
{ Q }
{ = }{ Q'+H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ R' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Lösung ist. \teilbeweis {}{}{}
{Zur Eindeutigkeit sei
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ TQ+R }
{ = }{ TQ'+R' }
{ }{ }
{ }{ }
} {}{}{} mit den angegebenen Bedingungen. Dann ist
\mavergleichskette
{\vergleichskette
{ T(Q-Q') }
{ = }{ R'-R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Da die Differenz
\mathl{R'-R}{} einen Grad kleiner als
\mathl{\operatorname{grad} \, (T)}{} besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ R' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ Q }
{ = }{ Q' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} lösbar.}
{}

}


Die Berechnung der Polynome \mathkor {} {Q} {und} {R} {} heißt \stichwort {Polynomdivision} {.} Das Polynom $T$ ist genau dann ein Teiler von $P$, wenn bei der Division mit Rest von $P$ durch $T$ der Rest gleich $0$ ist. Der Beweis des Satzes ist konstruktiv, d.h. es wird in ihm ein Verfahren beschrieben, mit der man die Division mit Rest berechnen kann. Dazu muss man die Rechenoperationen des Grundkörpers $K$ beherrschen. Wir geben dazu ein Beispiel.




\inputbeispiel{}
{

Wir führen die \definitionsverweis {Polynomdivision}{}{}
\mathdisp {P=6 X^3+X+1 \text{ durch } T= 3X^2+2X-4} { }
\zusatzklammer {über $\Q$} {} {} durch. Es wird also ein Polynom vom Grad $3$ durch ein Polynom vom Grad $2$ dividiert, d.h. dass der Quotient und auch der Rest \zusatzklammer {maximal} {} {} vom Grad $1$ sind. Im ersten Schritt überlegt man, mit welchem Term man $T$ multiplizieren muss, damit das Produkt mit $P$ im Leitterm übereinstimmt. Das ist offenbar $2X$. Das Produkt ist
\mavergleichskettedisp
{\vergleichskette
{ 2X { \left( 3X^2+2X-4 \right) } }
{ =} { 6X^3 +4 X^2 -8 X }
{ } { }
{ } { }
{ } { }
} {}{}{.} Die Differenz von $P$ zu diesem Produkt ist
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ 6 X^3+X+1 - { \left( 6X^3 +4 X^2 -8 X \right) } }
{ =} { -4 X^2 +9X +1 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Mit diesem Polynom, nennen wir es $P'$, setzen wir die Division durch $T$ fort. Um Übereinstimmung im Leitkoeffizienten zu erhalten, muss man $T$ mit
\mathl{{ \frac{ -4 }{ 3 } }}{} multiplizieren. Dies ergibt
\mavergleichskettedisp
{\vergleichskette
{- { \frac{ 4 }{ 3 } } T }
{ =} { - { \frac{ 4 }{ 3 } } { \left( 3X^2 +2X-4 \right) } }
{ =} { -4X^2 - { \frac{ 8 }{ 3 } } X + { \frac{ 16 }{ 3 } } }
{ } { }
{ } { }
} {}{}{.} Die Differenz zu $P'$ ist somit
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ -4 X^2 +9X +1 - { \left( -4X^2 - { \frac{ 8 }{ 3 } } X + { \frac{ 16 }{ 3 } } \right) } }
{ =} { { \frac{ 35 }{ 3 } } X - { \frac{ 13 }{ 3 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dies ist das Restpolynom und somit ist insgesamt
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ 6 X^3 +X + 1 }
{ =} { { \left( 3X^2 +2 X-4 \right) } { \left( 2X - { \frac{ 4 }{ 3 } } \right) } + { \frac{ 35 }{ 3 } } X - { \frac{ 13 }{ 3 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}


}





\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Linearer Faktor/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Polynom und
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann ist $a$ genau dann eine \definitionsverweis {Nullstelle}{}{} von $P$, wenn $P$ ein Vielfaches des linearen Polynoms\zusatzfussnote {\mathlk{X-a}{} heißt dann ein \stichwort {Linearfaktor} {} des Polynoms $P$} {.} {}
\mathl{X-a}{} ist.}
\faktzusatz {}
\faktzusatz {}

}
{

Wenn $P$ ein Vielfaches von
\mathl{X-a}{} ist, so kann man
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {(X-a)Q }
{ } { }
{ } { }
{ } { }
} {}{}{} mit einem weiteren Polynom $Q$ schreiben. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a) }
{ =} { (a-a) Q(a) }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{.} Im Allgemeinen gibt es aufgrund der Division mit Rest eine Darstellung
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { (X-a)Q +R }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} oder aber den Grad $0$ besitzt, also so oder so eine Konstante ist. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a) }
{ =} { R }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wenn also
\mavergleichskette
{\vergleichskette
{ P(a) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, so muss der Rest
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sein, und das bedeutet, dass
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ (X-a)Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}





\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Anzahl/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P }
{ \in }{K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Polynom \zusatzklammer {\mathlk{\neq 0}{}} {} {} vom \definitionsverweis {Grad}{}{} $d$.}
\faktfolgerung {Dann besitzt $P$ maximal $d$ Nullstellen.}
\faktzusatz {}
\faktzusatz {}

}
{

Wir beweisen die Aussage durch Induktion über $d$. Für
\mavergleichskette
{\vergleichskette
{ d }
{ = }{ 0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist die Aussage offensichtlich richtig. Es sei also
\mavergleichskette
{\vergleichskette
{d }
{ \geq }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und die Aussage sei für kleinere Grade bereits bewiesen. Es sei $a$ eine Nullstelle von $P$ \zusatzklammer {falls $P$ keine Nullstelle besitzt, sind wir direkt fertig} {} {.} Dann ist
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ Q(X-a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} nach Lemma 6.5 und $Q$ hat den Grad
\mathl{d-1}{,} so dass wir auf $Q$ die Induktionsvoraussetzung anwenden können. Das Polynom $Q$ hat also maximal
\mathl{d-1}{} Nullstellen. Für
\mavergleichskette
{\vergleichskette
{b }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt
\mavergleichskette
{\vergleichskette
{ P(b) }
{ = }{ Q(b)(b-a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dies kann nach Lemma 4.5  (5) nur dann $0$ sein, wenn einer der Faktoren $0$ ist, so dass eine Nullstelle von $P$ gleich $a$ ist oder aber eine Nullstelle von $Q$ ist. Es gibt also maximal $d$ Nullstellen von $P$.

}






\zwischenueberschrift{Der Fundamentalsatz der Algebra}

Es gilt der folgende \stichwort {Fundamentalsatz der Algebra} {,} den wir hier ohne Beweis erwähnen, und der die Wichtigkeit der komplexen Zahlen unterstreicht.


\inputfakt{Fundamentalsatz der Algebra/Nichtkonstantes Polynom/Nullstelle/Fakt}{Satz}{} {

\faktsituation {}
\faktvoraussetzung {Jedes nichtkonstante \definitionsverweis {Polynom}{}{}
\mavergleichskette
{\vergleichskette
{P }
{ \in }{{\mathbb C}[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} über den \definitionsverweis {komplexen Zahlen}{}{}}
\faktfolgerung {besitzt eine \definitionsverweis {Nullstelle}{}{.}}
\faktzusatz {}
\faktzusatz {}

}

Aus dem Fundamentalsatz der Algebra folgt, dass jedes von $0$ verschiedene Polynom
\mavergleichskette
{\vergleichskette
{P }
{ \in }{ {\mathbb C}[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in Linearfaktoren zerfällt, d.h. man kann
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { c(X-z_1)(X-z_2) \cdot (X-z_n) }
{ } { }
{ } { }
{ } { }
} {}{}{} mit eindeutig bestimmten komplexen Zahlen
\mathl{z_1 , \ldots , z_n}{} schreiben \zusatzklammer {wobei Wiederholungen erlaubt sind} {} {.}






\zwischenueberschrift{Der Interpolationssatz}

Der folgende Satz heißt \stichwort {Interpolationssatz} {} und beschreibt die Interpolation von vorgegebenen Funktionswerten durch Polynome.




\inputfaktbeweis
{Polynom/K/Interpolation/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $K$ ein Körper und es seien $n$ verschiedene Elemente
\mavergleichskette
{\vergleichskette
{ a_1 , \ldots , a_n }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und $n$ Elemente
\mavergleichskette
{\vergleichskette
{ b_1 , \ldots , b_n }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegeben.}
\faktfolgerung {Dann gibt es ein eindeutiges Polynom
\mavergleichskette
{\vergleichskette
{P }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} vom Grad
\mathl{\leq n-1}{} derart, dass
\mavergleichskette
{\vergleichskette
{ P { \left( a_i \right) } }
{ = }{ b_i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle $i$ ist.}
\faktzusatz {}
\faktzusatz {}

}
{

Wir beweisen die Existenz und betrachten zuerst die Situation, wo
\mavergleichskette
{\vergleichskette
{b_j }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist für alle
\mavergleichskette
{\vergleichskette
{j }
{ \neq }{i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für ein festes $i$. Dann ist
\mathdisp {(X-a_1) \cdots (X-a_{i-1}) (X-a_{i+1}) \cdots (X-a_n)} { }
ein Polynom vom Grad $n-1$, das an den Stellen
\mathl{a_1 , \ldots , a_{i-1}, a_{i+1} , \ldots , a_n}{} den Wert $0$ hat. Das Polynom
\mathdisp {{ \frac{ b_i }{ (a_i-a_1) \cdots (a_{i}-a_{i-1}) (a_{i} -a_{i+1}) \cdots (a_i-a_n) } } (X-a_1) \cdots (X-a_{i-1}) (X-a_{i+1}) \cdots (X-a_n)} { }
hat an diesen Stellen ebenfalls eine Nullstelle, zusätzlich aber noch bei $a_i$ den Wert $b_i$. Nennen wir dieses Polynom $P_i$. Dann ist
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {P_1 + P_2 + \cdots + P_n }
{ } { }
{ } { }
{ } { }
} {}{}{} das gesuchte Polynom. An der Stelle $a_i$ gilt ja
\mavergleichskettedisp
{\vergleichskette
{ P_j(a_i) }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} für
\mavergleichskette
{\vergleichskette
{j }
{ \neq }{i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ P_i(a_i) }
{ = }{b_i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

Die Eindeutigkeit folgt aus Korollar 6.6.

}







\inputbemerkung
{}
{

Wenn die Daten
\mathl{a_1 , \ldots , a_n}{} und
\mathl{b_1 , \ldots , b_n}{} gegeben sind, so findet man das interpolierende Polynom $P$ vom Grad $\leq n-1$, das es nach Satz 6.8 geben muss, folgendermaßen: Man macht den Ansatz
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {c_0+c_1X +c_2X^2 + \cdots + c_{n-2}X^{n-2}+c_{n-1}X^{n-1} }
{ } { }
{ } { }
{ } { }
} {}{}{} und versucht die unbekannten Koeffizienten
\mathl{c_0 , \ldots , c_{n-1}}{} zu bestimmen. Jeder Interpolationspunkt
\mathl{(a_i,b_i)}{} führt zu einer linearen Gleichung
\mavergleichskettedisp
{\vergleichskette
{ c_0+c_1a_i +c_2a_i^2 + \cdots + c_{n-2} a_i^{n-2}+c_{n-1} a_i^{n-1} }
{ =} { b_i }
{ } { }
{ } { }
{ } { }
} {}{}{} über $K$. Das entstehende lineare Gleichungssystem besitzt genau eine Lösung
\mathl{(c_0 , \ldots , c_{n-1})}{,} die das Polynom festlegt.

} Lineare Gleichungssysteme werden wir erst später systematisch behandeln, das Eliminationsverfahren oder ein anderes Lösungsverfahren sollte aber aus der Schule bekannt sein.






\zwischenueberschrift{Rationale Funktionen}

Im Polynomring
\mathl{K[X]}{} kann man addieren und multiplizieren, es handelt sich aber nicht um einen Körper, da man von $0$ verschiedene Polynome nicht invertieren kann. Beispielsweise besitzt $X$ kein Inverses, im Polynomring gibt es kein Element $X^{-1}$. Man kann aber mit Hilfe von formal-rationalen Funktionen einen Körper konstruieren. Dazu definiert man
\mavergleichskettedisp
{\vergleichskette
{ K(X) }
{ \defeq} { { \left\{ \frac{P}{Q} \mid P, Q \in K[X] , \, Q \neq 0 \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei man zwei Brüche \mathkor {} {\frac{P}{Q}} {und} {\frac{P'}{Q'}} {} miteinander identifiziert, wenn
\mavergleichskettedisp
{\vergleichskette
{PQ' }
{ =} {P'Q }
{ } { }
{ } { }
{ } { }
} {}{}{} ist. Auf diese Weise entsteht der \stichwort {Körper der rationalen Funktionen} {} \zusatzklammer {über $K$} {} {.}




\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Function-1_x.svg} }
\end{center}
\bildtext {Man kann auch Brüche $P/Q$ von Polynomen als Funktionen auffassen, die außerhalb der Nullstellen des Nenners definiert sind. Das Beispiel zeigt den Graphen der rationalen Funktion $1/X$.} }

\bildlizenz { Function-1 x.svg } {} {Qualc1} {Commons} {CC-by-sa 3.0} {}


Diese Brüche kann man wiederum als sinnvolle Funktionen auffassen, allerdings nicht auf ganz $K$. Der Definitionsbereich besteht vielmehr aus dem Komplement der Nullstellen des Nennerpolynoms.


\inputdefinition
{}
{

Zu \definitionsverweis {Polynomen}{}{}
\mathbed {P,Q \in \R [X]} {}
{Q \neq 0} {}
{} {} {} {,} heißt die \definitionsverweis {Funktion}{}{} \maabbeledisp {} {D} { \R } {z} { { \frac{ P(z) }{ Q(z) } } } {,} wobei $D$ das \definitionsverweis {Komplement}{}{} der \definitionsverweis {Nullstellen}{}{} von $Q$ ist, eine \definitionswort {rationale Funktion}{.}

}