Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Teil I/Arbeitsblatt 4
- Übungsaufgaben
Zeige, dass die Verknüpfung auf einer Geraden, die zwei Punkten ihren Mittelpunkt zuordnet, kommutativ, aber nicht assoziativ ist. Gibt es ein neutrales Element?
Es sei die Menge aller weiblichen Doppelvornamen (Bindestrichvornamen, wobei die einzelnen Teile einfache Vornamen sind, und jede Kombination erlaubt ist). Wir betrachten die Verknüpfung
die einem Doppelvornamenpaar den Doppelvornamen zuordnet.
- Was ist der Wert von unter dieser Verknüpfung?
- Ist die Verknüpfung kommutativ?
- Ist die Verknüpfung assoziativ?
- Besitzt die Verknüpfung ein neutrales Element?
- Ist die Verknüpfung surjektiv?
- Ist die Verknüpfung injektiv?
Es sei ein Körper und seien Elemente aus . Zeige, dass die folgenden Vorzeichenregeln gelten.
Beschreibe und beweise Regeln für die Addition und die Multiplikation von geraden und ungeraden ganzen Zahlen. Man definiere auf der zweielementigen Menge
eine „Addition“ und eine „Multiplikation“, die diese Regeln „repräsentieren“.
Es sei ein Körper. Zeige, dass man jeder natürlichen Zahl ein Körperelement zuordnen kann, derart, dass das Nullelement in und das Einselement in ist und dass
gilt. Zeige, dass diese Zuordnung die Eigenschaften
besitzt.
Erweitere diese Zuordnung auf die ganzen Zahlen und zeige, dass die angeführten strukturellen Eigenschaften ebenfalls gelten.
Es seien Elemente in einem Körper, wobei und nicht seien. Beweise die folgenden Bruchrechenregeln.
Gilt die zu (8) analoge Formel, die entsteht, wenn man die Addition mit der Multiplikation (und die Subtraktion mit der Division) vertauscht, also
Zeige, dass die „beliebte Formel“
nicht gilt.
Es sei ein Körper und seien Elemente aus . Beweise die folgenden Potenzgesetze für natürliche Exponenten .
Es sei ein Körper und seien Elemente aus . Beweise die folgenden Potenzgesetze für ganzzahlige Exponenten . Dabei darf man die entsprechenden Gesetze für Exponenten aus sowie die Tatsachen, dass das Inverse des Inversen wieder das Ausgangselement ist und dass das Inverse von gleich ist, verwenden.
Berechne das Matrizenprodukt
a) Man gebe ein Beispiel für rationale Zahlen mit
b) Man gebe ein Beispiel für rationale Zahlen
mit
c) Man gebe ein Beispiel für irrationale Zahlen
und eine rationale Zahl
mit
Zeige, dass die Binomialkoeffizienten natürliche Zahlen sind.
Beweise die Formel
Beweise durch Induktion, dass für die Abschätzung
gilt.
Franziska möchte mit ihrem Freund Heinz Schluss machen. Sie erwägt die folgenden drei Begründungen.
- „Du hast dich schon am ersten Tag voll daneben benommen. Seitdem ist es von jedem Tag zum nächsten Tag nur noch schlimmer geworden. Du wirst Dich also immer völlig daneben benehmen“.
- „Wenn ich mit Dir zusammenbleiben würde, so würde ich irgendwann als eine traurige, gelangweilte, vom Leben enttäuschte Person enden, das möchte ich aber auf gar keinen Fall“.
- „Also, wenn Du mich nicht liebst, will ich Dich sowieso nicht. Wenn Du mich aber liebst, so komme ich zu dem Schluss, dass Du dein Verhalten mit Deinen Gefühlen nicht zur Deckung bringen kannst. Dann bist Du also unreif und dann will ich Dich auch nicht“.
Welche mathematischen Beweisprinzipien spiegeln sich in den drei Begründungen wieder?
- Löse das folgende Minisudoku
- Begründe, dass das Minisudoku aus (1) nur eine Lösung besitzt.
- Welche mathematischen Beweisverfahren finden sich als typische Argumentationsschemata beim Lösen eines Sudokus wieder?
Nehmen Sie Stellung zur folgenden Aussage: „Das Prinzip „Beweis durch Widerspruch“ ist offenbar absurd. Wenn man alles annehmen darf, so kann man immer einen Widerspruch erzielen und somit alles beweisen“.
Kommentar:
Die Aufgabe ist provokativ formuliert. Es geht jetzt darum sich genau klar zu machen wie der Beweis durch Widerspruch funktioniert.
Zur Erinnerung: Wir nehmen an, dass eine Aussage nicht gilt. Wir argumentieren mit unter Zuhilfenahme beliebiger bekannter mathematischer Gesetzmäßigkeiten. Wenn wir dadurch einen Widerspruch herleiten können, dann muss gelten.
Es gibt zwei Arten wie man sich vorstellen könnte damit Alles herleiten zu können.
Nehmen wir zunächst das Gegenteil einer beliebigen Aussage an. Wenn wahr ist, dann spricht das nicht gegen das Beweisprinzip wenn wir einen Widerspruch zu finden. Wenn aber falsch ist, dann nehmen wir mit eine wahre Aussage an. Offensichtlich können wir so dann keinen Widerspruch erzeugen.
Nehmen wir nun eine Aussage an die an sich widersprüchlich ist weil sie aus zwei Teilaussagen besteht die sich widersprechen. Dann haben wir natürlich direkt einen Widerspruch gefunden - nach dem Beweisprinzip muss also das Gegenteil gelten. Das heißt logisch aber nicht, dass das Gegenteil beider Teilaussagen wahr sein muss, sondern dass nicht beide gleichzeitig wahr sein können. Das heißt also, dass das Gegenteil einer der beiden Aussagen wahr sein muss - mit diesem Beweisversuch konnten wir aber nicht feststellen auf welche davon das zutrifft.
Wir sehen, dass wir keine falschen Aussagen durch den Beweis durch Widerspruch zeigen können.
- Aufgaben zum Abgeben
Aufgabe (2 Punkte)
Zeige, dass das Potenzieren auf den positiven natürlichen Zahlen, also die Zuordnung
weder kommutativ noch assoziativ ist. Besitzt diese Verknüpfung ein neutrales Element?
Aufgabe (2 Punkte)
Es sei ein von verschiedenes Element in einem Körper. Zeige, wie man mit vier Multiplikationen berechnen kann.
Aufgabe (3 Punkte)
Zeige, dass die „Rechenregel“
bei (und ) niemals gilt. Man gebe ein Beispiel mit , wo diese Regel gilt.
Aufgabe (2 (1+1) Punkte)
Es sei und .
- Zeige, dass genau dann irrational ist, wenn irrational ist.
- Es sei zusätzlich . Zeige, dass genau dann irrational ist, wenn irrational ist.
Aufgabe (3 Punkte)
Beweise die Formel
<< | Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Teil I | >> PDF-Version dieses Arbeitsblattes Zur Vorlesung (PDF) |
---|