Kurs:Topologische Invertierbarkeitskriterien/p-konvexe Hülle
Einführung
BearbeitenFür -Normen in -Regularitätsbeweisen bzw. -Halbormen beim Nachweis der PC-Regularität benötigt man als absorbierende Mengen eine absolute -konvexe Menge. Diese Verallgemeinerung von konvexen Mengen auf pseudokonvexe Räume benötigt den Begriff der (absolute) -konvexen Hülle (siehe Köthe 1966[1]).
Definition: p-konvex
BearbeitenSei eine Teilmenge eines Vektorraums und , dann heißt -konvex, wenn gilt
Definition: absolut p-konvex
BearbeitenSei eine Teilmenge eines Vektorraums und , dann heißt absolut -konvex, wenn gilt
Definition: p-konvexe Hülle
BearbeitenDie -konvexe Hülle der Menge (Bezeichnung: ) ist der Schnitt über alle -konvexen Mengen, die enthalten.
Definition: absolut p-konvexe Hülle
BearbeitenDie absolut -konvexe Hülle der Menge (Bezeichnung: ) ist der Schnitt über alle absolut -konvexen Mengen, die enthalten.
Lemma: Darstellung der absolut p-konvexen Hülle
BearbeitenSei eine Teilmenge eines Vektorraums über dem Körper und , dann lässt sich die absolut -konvexe Hülle von wie folgt schreiben:
Beweis
BearbeitenEs werden 3 Teilbehauptungen gezeigt, wobei (1) und (2) liefert und (3) die Teilmengenbeziehung .
- (Beweisteil 1) ,
- (Beweisteil 2) ist absolut -konvex und
- (Beweisteil 3) ist in jeder absolut -konvexen Menge enthalten.
Beweisteil 1
Bearbeiten, denn
Beweisteil 2
BearbeitenSeien nun und gegeben. Man muss zeigen, dass liegt.
Beweisteil 2.1 - Absolut p-konvex
BearbeitenMit sollen nun die folgende Darstellungen haben:
- mit
- mit
Man zeigt nun das absolut -konvex ist-
Beweisteil 2.2 - Absolut p-konvex
Bearbeitenist absolut -konvex, denn es gilt mit :
Damit erhält man:
Beweisteil 2.3 - Nullvektor
Bearbeiten, denn es gilt mit und ein beliebiges erhält .
Beweisteil 3
BearbeitenWir zeigen nun, dass die absolut -konvexe Hülle in jeder absolut -konvexen Obermenge von enthalten ist.
Beweisteil 3.1 - Induktion über Anzahl der Summanden
BearbeitenNun soll induktiv über die Anzahl der Summanden gezeigt werden, dass jedes Element der Form
in einer gegebenen absolut -konvexen Menge enthalten ist.
Beweisteil 3.2 - Induktionsanfang
BearbeitenFür folgt die Behauptung über die Definition einer absolut -konvexen Menge .
Beweisteil 3.3 - Induktionsvoraussetzung
BearbeitenNun gelte die Voraussetzung für , d.h.:
Beweisteil 3.4 - Induktionsschritt
BearbeitenFür ergibt sich die Behauptung wie folgt:
Sei und mit für alle . ist nun zu beweisen.
Beweisteil 3.5 - Induktionsschritt
BearbeitenIst , so ist nichts zu zeigen, da dann alle sind für .
Beweisteil 3.6 - Konstruktion einer p-Konvexkombination aus n Summanden
BearbeitenWir konstruktruieren nun eine Summe von nicht-negativen Summanden
Beweisteil 3.7 - Anwendung der Induktionsvoraussetzung
BearbeitenSei also . Die Ungleichung
liefert nach Induktionsvoraussetzung .
Beweisteil 3.8 - Induktionsschritt
BearbeitenDa absolut -konvex ist, folgt mit
Beweis 4
BearbeitenAus den Beweisteilen , und zusammen folgt die Behauptung.
Lemma: p-konvexe Hülle
BearbeitenSei eine Teilmenge eines Vektorraums über dem Körper und , dann lässt sich die -konvexe Hülle von wie folgt schreiben:
Beweis: Aufgabe für Lernende
BearbeitenÜbertragen Sie den obigen Beweis analog auf die -konvexe Hülle.
Siehe auch
BearbeitenQuellennachweis
Bearbeiten- ↑ Gottfried Köthe (1966) Topologische lineare Räume, 15.10, S.162-166.
Seiteninformation
BearbeitenDiese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Wiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Topologische Invertierbarkeitskriterien' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Kurs:Topologische%20Invertierbarkeitskriterien/p-konvexe%20H%C3%BClle
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.