Lineares Differentialgleichungssystem/Konstante Koeffizienten/Charakteristisches Polynom/Textabschnitt
Es sei
mit eine lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten. Dann nennt man das charakteristische Polynom
auch das charakteristische Polynom der Differentialgleichung.
Die Nullstellen des charakteristischen Polynoms sind nach Fakt Eigenwerte von und liefern somit nach Fakt Lösungen des Differentialgleichungssystems.
Es sei
eine lineare gewöhnliche Differentialgleichung höherer Ordnung mit konstanten Koeffizienten und es sei
das zugehörige System von linearen Differentialgleichungen mit konstanten Koeffizienten, also mit der Matrix
Das zu dieser Matrix gehörige charakteristische Polynom ist nach Aufgabe gleich
D.h. man kann dieses Polynom direkt aus der eingangs gegebenen Differentialgleichung höherer Ordnung ablesen.
Zu einer linearen gewöhnlichen Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten
ist das charakteristische Polynom gleich
Dessen Nullstellen sind einfach zu bestimmen, es ist