Polynomring/Differentialoperatoren/Einführung/Textabschnitt
Es sei ein Körper. Zu einem Polynom
und , , heißt das Polynom
die formale partielle Ableitung von nach .
Es wird also einfach algebraisch gemäß der üblichen Formel abgeleitet. Wenn ein Vielfaches der Charakteristik des Körpers ist, so kann diese Ableitung „überraschenderweise“ ergeben. Statt schreibt man auch kurz . Insgesamt handelt es sich um eine -lineare Abbildung
Es gilt die Produktregel (oder Leibnizregel)
Diese partiellen Ableitungen kann man miteinander verknüpfen. Hierzu empfiehlt sich Monomschreibweise. Zu einem Tupel (einem Multiindex)
setzen wir
wobei die -fache Hintereinanderschaltung von bezeichnet. Bei dieser Gesamtkomposition kommt es nicht auf die Reihenfolge an, was hier im algebraischen Kontext einfacher ist als der analytische Satz von Schwarz. Die Summe
nennt man die Ordnung der Hintereinanderschaltung. Zu einem Monom ist
wobei zu einem Tupel die Fakultät als
definiert wird und wobei dieser Ausdruck als zu verstehen ist, wenn in einer Komponente negativ ist.
Es sei ein Körper der Charakteristik . Unter einem (formalen) Differentialoperator auf versteht man eine endliche Summe
mit polynomialen Koeffizientenfunktionen , wobei die Indizes Tupel aus sind.
Die Ordnung eines Operators ist das maximale mit . Ein solcher Differentialoperator ist eine -lineare Abbildung
Er führt also polynomiale Funktionen auf dem in ebensolche Funktionen über. Im physikalischen Kontext sind die Koeffizientenfunktionen häufig nur stetige Funktionen auf einer offenen Menge , und da beim Anwenden des Operators der Differenzierbarkeitsgrad heruntergeht, sind die Funktionenräume, die aus hinreichend oft differenzierbaren Funktionen bestehen und die als Definitionsbereich und als Wertebereich auftreten, nicht unbedingt identisch. Die beschriebenen Differentialoperatoren nennt man genauer lineare partielle Differentialoperatoren. Partiell bezieht sich dabei darauf, dass es mehr als eine Variable gibt (sonst spricht man von gewöhnlichen Differentialgleichungen) und linear darauf, dass die einzelnen nur mit Koeffizientenfunktionen multipliziert werden, aber beispielsweise nicht quadriert werden. Insbesondere ist der Operator als Abbildung -linear. Ein nichtlinearer partieller Differentialoperator ist beispielsweise der Monge-Ampère-Operator
Hier steht links nicht die Verknüpfung der Operatoren, sondern das Produkt! Die Wirkungsweise auf eine Funktion ist also .
Ein Differentialoperator auf
und ein Polynom gibt Anlass zur (linearen) partiellen Differentialgleichung
wobei nach den Lösungen (bzw. realistischer im Ring der hinreichend oft differenzierbaren Funktionen auf dem , ) gesucht wird. Prominente partielle Differentialgleichungen sind die Wärmeleitungsgleichung mit
(in ) oder die Wellengleichung
(in ).
Den Operator
nennt man den Homogenitätsoperator oder die Euler-Derivation. Er bildet ein Monom auf ab. Allgemeiner wird ein homogenes Polynom von Grad durch diesen Operator auf abgebildet. Die homogenen Polynome vom Grad sind also die Eigenvektoren zum Eigenwert zu diesem Operator.
Die Differentialoperatoren haben die besondere Eigenschaft, dass sie auf abbilden. Generell gibt es für jedes Polynom einen Operator, der dieses Polynom auf abbildet. Wenn die Form
mit einem vom Grad für ein bestimmtes , so ist ein Operator, der auf abbildet.
Wir nennen einen Differentialoperator unitär, wenn es ein Polynom mit
gibt, wenn also die partielle Differentialgleichung eine Lösung besitzt. Wegen der Existenz der Operatoren gibt es in einem Polynomring viele unitäre Operatoren. Ein Operator wie ist nicht unitär.
Die Operatoren sind in positiver Charakteristik zunächst nicht definiert, wenn ein Vielfaches der Charakteristik ist. Dennoch kann man dieses Operatoren auch in diesem Fall sinnvoll interpretieren.
Die mehrdimensionale Taylor-Formel (bis zur Ordnung ) hat die Form (siehe Fakt)
Dabei ist eine hinreichend oft differenzierbare Funktion in einer Umgebung eines Punktes , repräsentiert einen von ausgehenden Vektor und bedeutet, dass der Fehlerterm in einem gewissen Sinne klein ist. Wenn ein Polynom über einem beliebigen Körper ist, so gilt diese Beziehung nach wie vor (bei hinreichend groß handelt es sich um eine Gleichung), und zwar im Polynomring , und diese Beziehung lässt sich direkt algebraisch beweisen. Beispielsweise ist für
Die Koeffizientenfunktion vor , also die konstante Funktion , kann man als erhalten. Da die Gleichung aber algebraisch ist, gilt sie in jeder Charakteristik. In der Tat kann man den Ausdrücken auch in positiver Charakteristik einen wohldefinierten Sinn zuordnen, nämlich eben als Koeffizientenfunktion zu in der Taylor-Entwicklung. Zur Berechnung kann man dabei so vorgehen, dass man „normal“ vollständig ableitet und die vorgezogenen Exponenten erstmal in belässt, dann mit kürzt (das Ergebnis bleibt in ) und erst dann diese Zahl in interpretiert.
Über einem Körper der Charakteristik gibt es also auch die Differentialoperatoren . Insbesondere ist
Diese Operatoren sind aber nicht, wie in Charakteristik , als eine Hintereinanderschaltung von partiellen Ableitungen realisierbar. Der Ring aller Differentialoperatoren ist in positiver Charakteristik nicht endlich erzeugt.
Einen Differentialoperator auf bzw. auf kann man auf jede offene Menge einschränken. Er ist dann definiert auf der entsprechenden Funktionsklasse auf . Dies gilt auch im algebraischen Kontext.
Die partiellen Ableitungen sind lokal in dem Sinne, dass nur von einer offenen Umgebung des Punktes abhängt und auch nur auf einer solchen Umgebung definiert sein muss. Insbesondere ist für rationale Funktionen (also Polynome mit ) wohldefiniert, und ergibt wieder eine rationale Funktion, die außerhalb der Nullstellenmenge von definiert ist. Dies überträgt sich auf alle Differentialoperatoren. Insbesondere führt ein Differentialoperator auf zu einem Differentialoperator auf dem Körper der rationalen Funktionen
Umgekehrt lässt sich nicht jeder auf einer offenen Menge definierte Differentialoperator sinnvoll auf den Gesamtraum fortsetzen. Beispielsweise ist ein Operator wie auf der Nenneraufnahme (geometrisch: dort, wo ist) definiert, aber nicht überall. Alle unter der Verwendung verschiedener Nennerpolynome aufgestellten Differentialoperatoren kann man als Differentialoperator auf auffassen und vergleichen. Dabei gilt, dass ein Differentialoperator
genau dann auf einem Unterring
einen sinnvollen Differentialoperator definiert, wenn gilt. Es wird dann einfach der Definitionsbereich und der Bildbereich auf eingeschränkt.