Vektorraum/Nur Zahlenraum/Einführung/Textabschnitt
Es sei ein Körper und . Dann ist die Produktmenge
mit der komponentenweisen Addition, also
und der durch
definierten Skalarmultiplikation ein sogenannter Vektorraum. Damit ist folgendes gemeint: Die Menge ist mit der Verknüpfung , die man (Vektor)-Addition nennt, eine kommutative Gruppe, und die Operation , die man Skalarmultiplikation nennt, erfüllt die folgenden Eigenschaften.
- .
- .
- .
Diese Eigenschaften lassen sich für den direkt überprüfen.
Man nennt den mit diesen Strukturen den -dimensionalen Standardraum oder (kartesischen) Zahlenraum. Insbesondere ist selbst ein Vektorraum. Die Elemente in einem Vektorraum nennt man Vektoren, und die Elemente heißen Skalare. Zu
nennt man die -te Koordinate des Vektors. Das Nullelement wird auch als Nullvektor bezeichnet, und zu heißt
das Negative zu . Wie in Ringen gilt wieder Punktrechnung vor Strichrechnung, d.h. die Skalarmultiplikation bindet stärker als die Vektoraddition.
Den Körper, der im Vektorraumbegriff vorausgesetzt ist, nennt man auch den Grundkörper. Alle Begriffe der linearen Algebra beziehen sich auf einen solchen Grundkörper, er darf also nie vergessen werden, auch wenn er manchmal nicht explizit aufgeführt wird. Bei spricht man von rationalen Vektorräumen und bei von reellen Vektorräumen. Zunächst entwickeln wir aber die algebraische Theorie der Vektorräume über einem beliebigen Körper.
Der Nullraum , der aus dem einzigen Element besteht, ist ebenfalls ein Vektorraum. Man kann ihn auch als
auffassen. Es empfiehlt sich, Vektorräume als geometrische Objekte aufzufassen und sich als eine Gerade, als eine Ebene und als einen Raum vorzustellen.
Die Vektoren im Standardraum kann man als Zeilenvektoren
oder als Spaltenvektoren
schreiben. Der Vektor
wobei die an der -ten Stelle steht, heißt -ter Standardvektor.
Zu Vektoren im und Skalaren nennt man
eine Linearkombination dieser Vektoren.
Die Vektoren im heißen ein Erzeugendensystem des , wenn man jeden Vektor als eine Linearkombination mit den Vektoren schreiben kann, wenn es also Skalare mit
gibt.
Man verlangt hier keine Eindeutigkeit, bei einem Erzeugendensystem kann man einen Vektor im Allgemeinen auf verschiedene Arten als Linearkombination darstellen.
Wir betrachten im die drei Vektoren und . Den Vektor kann man als
aber auch als
schreiben. Besonders deutlich wird das Uneindeutigkeitsphänomen, wenn man den Nullvektor betrachtet. Es ist
die sogennante triviale Darstellung des Nullvektors, aber es ist auch
Es seien Vektoren im . Dann sind die folgenden Aussagen äquivalent.
- Die Vektoren bilden ein Erzeugendensystem des .
- Für jeden Standardvektor gibt es eine Darstellung als
Linearkombination
- Für jedes
ist das lineare Gleichungssystem
lösbar.
(1) und (3) sind äquivalent, da (3) lediglich eine ausgeschriebene Version von (1) ist. Die Eigenschaft (2) ist eine Spezialisierung von (1). Die Umkehrung ergibt sich so. Man schreibt
Da man nach Voraussetzung die als Linearkombinationen der ausdrücken kann, ergibt sich auch eine Linearkombination von mit den .
Wenn die Vektoren die Standardvektoren sind, so kann man jeden Vektor wegen
unmittelbar und eindeutig als Linearkombination der Standardvektoren darstellen.
Die Vektoren im heißen eine Basis des , wenn man jeden Vektor eindeutig als eine Linearkombination mit den Vektoren schreiben kann, wenn es also eindeutig bestimmte Skalare mit
gibt.
Es seien Vektoren im . Dann sind die folgenden Aussagen äquivalent.
- Die Vektoren bilden eine Basis des .
- Die Vektoren bilden ein
Erzeugendensystem
des , und die einzige Darstellung des Nullvektors als
Linearkombination
der ist die triviale Darstellung
- Für jedes
besitzt das lineare Gleichungssystem
eine eindeutige Lösung.
(1) und (3) sind äquivalent, da (3) lediglich eine ausgeschriebene Version von (1) ist. Die Implikation von (1) nach (2) ist klar, da die eindeutige Darstellbarkeit insbesondere für den Nullvektor gilt. Für die Umkehrung sei
angenommen. Dann ist direkt
Wegen der eindeutigen Darstellbarkeit der muss , also für alle sein.
Es sei bemerkt, dass die Bedingungen im vorstehenden Lemma nur bei erfüllt sein können.