Zahlenraum/Ebenen und Geraden/Einführung/Textabschnitt
Dies folgt aus Fakt und daraus, dass die beiden angegebenen Vektoren offenbar Lösungen der zugehörigen homogenen linearen Gleichung sind, die wegen kein Vielfaches voneinander sind. Man kann auch jede Lösung als Linearkombination dieser beiden Lösungen schreiben, es ist nämlich
Also handelt es sich um Basislösungen.
Wir betrachten die beiden Mengen
(aus Beispiel) und
und interessieren uns für den Durchschnitt
Ein Punkt liegt genau dann im Durchschnitt, wenn er simultan beide Bedingungen, also beide Gleichungen (nennen wir sie und ), erfüllt. Gibt es eine „einfachere“ Beschreibung dieser Durchschnittsmenge? Ein Punkt, der die beiden Gleichungen erfüllt, erfüllt auch die Gleichung, die entsteht, wenn man die beiden Gleichungen miteinander addiert oder die Gleichungen mit einer Zahl multipliziert. Eine solche Linearkombination der Gleichungen ist beispielsweise
Daher ist
da man aus der neuen zweiten Gleichung die alte zweite Gleichung zurückkonstruieren kann und daher die Bedingungen links und rechts insgesamt äquivalent sind. Der Vorteil der zweiten Beschreibung ist, dass man die Variable in der neuen zweiten Gleichung eliminiert hat. Daher kann man nach auflösen und erhält
und für muss dann
sein. Auch diese zwei aufgelösten Gleichungen sind zusammen äquivalent zu den beiden ersten und somit ist
Diese Beschreibung liefert einen expliziteren Überblick über die Menge .
Wir besprechen ein geometrisches Beispiel ähnlich zu Beispiel, wobei jetzt die Gleichungen nicht homogen sein müssen.
Im seien zwei Ebenen
und
gegeben. Wie kann man die Schnittgerade beschreiben? Ein Punkt liegt genau dann auf der Schnittgerade, wenn er die beiden Ebenengleichungen erfüllt; es muss also sowohl
gelten. Wir multiplizieren die erste Gleichung mit und ziehen davon das -fache der zweiten Gleichung ab und erhalten
Wenn man setzt, so muss und sein. D.h. der Punkt gehört zu . Ebenso findet man, indem man setzt, den Punkt . Damit ist die Schnittgerade die Verbindungsgerade dieser Punkte, also