Exponentialfunktion/Übergang von Q nach R/Monotonie/Einführung/Textabschnitt
Die oben auf den rationalen Zahlen definierten Exponentialfunktionen besitzen eine Fortsetzung auf die reellen Zahlen, die entsprechend mit
bezeichnet wird. Wie ist diese zu definieren, welche Bedeutung soll beispielsweise der Ausdruck
bekommen? Die richtige Idee ist hier, den Exponenten durch eine rationale Folge zu approximieren (etwa durch die Dezimalbruchfolge oder eine Heron-Folge) und dann die Folge von Potenzen mit rationalen Exponenten zu betrachten, die wir im ersten Teil der Vorlesung eingeführt haben. Wenn diese Folge konvergiert, so hat man einen sinnvollen Kandidaten für . Dieser Ansatz erfordert aber, dass man zeigen kann, dass dieser Grenzwert unabhängig von der gewählten Folge ist. Dazu dient das folgende Lemma.
Es sei
eine monotone Funktion.
Dann ist für jedes und jede rationale streng wachsende Folge , , die gegen konvergiert, die Folge konvergent mit einem nur von abhängigen Grenzwert.
Ohne Einschränkung sei wachsend. Es sei eine rationale streng wachsende Folge, die gegen konvergiert. Dann ist auch eine wachsende Folge. Es sei mit . Dann ist auch
für alle . Die Bildfolge ist also wachsend und nach oben beschränkt, daher besitzt sie nach Fakt einen Grenzwert in . Es sei eine weitere rationale streng wachsende Folge, die gegen konvergiert. Dann gibt es zu jedem ein mit
Wegen der Monotonie von überträgt sich dies auf die Bildfolgen, d.h. es ist
Somit ist
und wegen der Symmetrie der Situation konvergieren beide Folgen gegen den gleichen Grenzwert.
Die vorstehende Situation bedeutet, dass man für Zahlen durch die Festlegung
mit einer beliebigen rationalen streng wachsenden Folge , die gegen konvergiert, eine auf ganz definierte Funktion erhält. Da wir für nicht die Stetigkeit voraussetzen, kann sich für rationale Zahlen der Funktionswert bei dieser Konstruktion sogar ändern.
Dieses Fortsetzungsverfahren wenden wir auf die Exponentialfunktion an, d.h. für ist
mit einer beliebigen streng wachsenden Folge aus rationalen Zahlen , die gegen konvergiert. Für rationale Zahlen ändert sich dabei der Wert nicht, da die rationalen Exponentialfunktionen stetig sind. Dies ergibt sich genau so wie die Stetigkeit der auf definierten Exponentialfunktionen weiter unten aus der Funktionalgleichung und der Monotonie, siehe Aufgabe.
Die in Fakt gezeigten Eigenschaften übertragen sich auf die reellen Zahlen.
Es sei eine positive reelle Zahl. Dann besitzt die Exponentialfunktion
folgende Eigenschaften.
- Es ist für alle .
- Es ist .
- Für und ist .
- Für und ist .
- Für ist streng wachsend.
- Für ist streng fallend.
- Es ist für alle .
- Für ist .
Wir beweisen (1), die anderen Eigenschaften ergeben sich ähnlich, siehe Aufgabe. Es sei eine wachsende rationale Folge, die gegen konvergiert, und eine wachsende Folge, die gegen konvergiert. Dann ist nach Fakt (1) die Folge eine wachsende rationale Folge, die gegen konvergiert. Somit ist unter Verwendung der rationalen Funktionalgleichung und von Fakt (2)
Sei . Wir zeigen zuerst die Stetigkeit im Nullpunkt. Da nach Aufgabe die Folge , , gegen konvergiert, und da die Exponentialfunktion wachsend ist, gibt es zu jedem positiven ein positives mit der Eigenschaft, dass aus
die Abschätzung
folgt. Es sei nun beliebig und vorgegeben. Wir betrachten ein , das zu
die Stetigkeit im Nullpunkt sichert. Dann gilt unter Verwendung von Fakt (1) für mit
die Abschätzung
Es sei eine positive reelle Zahl. Dann ist die Exponentialfunktion
Die Homomorphieeigenschaft folgt direkt aus der Funktionalgleichung, die Injektivität folgt aus der der Monotonieeigenschaft in Zusammenhang mit Fakt. Zum Nachweis der Surjektivität sei vorgegeben. Nach Fakt gibt es ganze Zahlen mit
Aufgrund des Zwischenwertsatzes, den wir wegen der in Fakt bewiesenen Stetigkeit der Exponentialfunktionen anwenden können, gibt es ein mit
was die Surjektivität bedeutet.
Eine besonders wichtige Exponentialfunktion ergibt sich, wenn man als Basis die
Eulersche Zahl
nimmt, die wir als
eingeführt haben. In Bemerkung haben wir erwähnt, dass diese Zahl mit
übereinstimmt. Für diese Exponentialfunktion gibt es ebenfalls eine weitere Darstellung, die sich an dieser Reihe orientiert, die Darstellung als Potenzreihe. Diese Übereinstimmung können wir hier nicht beweisen.
Für die Exponentialfunktion zur Basis gilt die Darstellung
Eine Besonderheit dieser Funktion ist, dass sie mit ihrer Ableitung übereinstimmt. Die Steigung der Tangenten an einem Punkt des Graphen stimmt also stets mit dem Funktionswert überein. Der Satz bedeutet insbesondere, dass die Reihe für jedes konvergiert, wobei diese Konvergenz im Allgemeinen recht schnell ist.