Kurs:Algebraische Kurven (Osnabrück 2008)/Arbeitsblatt 7

Aufgabe (4 Punkte)

Es sei ein unendlicher Körper und sei ein von verschiedenes Polynom. Zeige, dass dann die Nullstellenmenge nicht der gesamte affine Raum ist.

(Aus dieser Aufgabe folgt auch Aufgabe 3.8.)

Aufgabe (9 Punkte)

Betrachte die Abbildung

Bestimme zu den drei folgenden Scharen aus parallelen Geraden die Bildkurven der Geraden unter dieser Abbildung (man gebe sowohl eine Parametrisierung als auch eine Kurvengleichung).

  1. Die zur -Achse parallelen Geraden,
  2. die zur -Achse parallelen Geraden,
  3. die zur Antidiagonalen parallelen Geraden.

Bestimme zu jeder Schar, ob sich die Bildkurven überschneiden.


Aufgabe * (3 Punkte)

Betrachte die beiden Kreise

Zeige, dass die beiden Kreise über affin-linear äquivalent sind, aber nicht über .


Aufgabe (6 Punkte)

Finde für die verschiedenen reellen Quadriken eine Realisierung als Kegelschnitt, also als Schnitt einer Ebene mit dem Kegel , oder beweise, dass es eine solche Realisierung nicht gibt.


Aufgabe (3 Punkte)

Transformiere die Quadrik

auf eine reelle Standardgestalt.


Aufgabe (6 Punkte)

Wir betrachten die beiden Restklassenringe

Zeige: ist ein Hauptidealbereich, hingegen nicht.

(Das sind die Ringe, die zum reellen Kreis und zur reellen Hyperbel gehören.) Tipp: Man betrachte für das Ideal .

Aufgabe (2 Punkte)

Parametrisiere die durch

definierte Quadrik mit Hilfe des Nullpunktes und der Geraden .


Aufgabe (4 Punkte)

Parametrisiere die durch

definierte Quadrik mit Hilfe des Punktes und der -Achse. Führe keine Variablentransformation durch.


Aufgabe (3 Punkte)

Betrachte die durch

definierte algebraische Kurve (). Zeige, dass man mit dem Nullpunkt und der Geraden eine Parametrisierung von erhält mit der im Beweis zu Satz 7.6 beschriebenen Methode.


Aufgabe (6 Punkte)

Sei ein algebraisch abgeschlossener Körper und sei ein irreduzibles Polynom. Zeige, dass die Kurve genau dann rational ist, wenn es einen injektiven -Algebrahomomorphismus

gibt.

(Hier steht links der Quotientenkörper und rechts der rationale Funktionenkörper.)