Kurs:Lineare Algebra (Osnabrück 2017-2018)/Teil II/Vorlesung 58/latex

\setcounter{section}{58}






\zwischenueberschrift{Eigenschaften des Dachprodukts}





\inputfaktbeweis
{Dachprodukt/Endlichdimensional/Basis/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektor\-raum}{}{} der Dimension $m$. Es sei
\mathl{v_1 , \ldots , v_m}{} eine \definitionsverweis {Basis}{}{} von $V$ und es sei
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann bilden die Dachprodukte
\mathdisp {v_{i_1} \wedge \ldots \wedge v_{i_n} \text{ mit } 1 \leq i_1 < \ldots < i_n \leq m} { }
eine Basis von
\mathl{\bigwedge^n V}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {Wir zeigen zuerst, dass ein Erzeugendensystem vorliegt.\leerzeichen{}}{}{}
{ Da die Elemente der Form
\mathl{w_1 \wedge \ldots \wedge w_n}{} nach Lemma 57.5  (1) ein \definitionsverweis {Erzeugendensystem}{}{} von
\mathl{\bigwedge^n V}{} bilden, genügt es zu zeigen, dass man diese durch die angegebenen Elemente darstellen kann. Für jedes $w_j$ gibt es eine Darstellung
\mathl{w_j = \sum_{i=1}^m a_{ij} v_i}{,} daher kann man nach Lemma 57.5  (4) die
\mathl{w_1 \wedge \ldots \wedge w_n}{} als \definitionsverweis {Linearkombinationen}{}{} von Dachprodukten der Basiselemente darstellen, wobei allerdings jede Reihenfolge vorkommen kann. Es sei also
\mathl{v_{k_1} \wedge \ldots \wedge v_{k_n}}{} gegeben mit
\mathl{k_j \in \{1 , \ldots , m\}}{.} Durch Vertauschen von benachbarten Vektoren kann man nach Lemma 57.5  (3) \zusatzklammer {unter Inkaufnahme eines anderen Vorzeichens} {} {} erreichen, dass die Indizes \zusatzklammer {nicht notwendigerweise streng} {} {} aufsteigend geordnet sind. Wenn sich ein Index wiederholt, so ist nach Lemma 57.5  (2) das Dachprodukt $0$. Also wiederholt sich kein Index und diese Dachprodukte sind in der gewünschten Form.}
{}

\teilbeweis {}{}{}
{Zum Nachweis der \definitionsverweis {linearen Unabhängigkeit}{}{} zeigen wir unter Verwendung von Lemma 14.7, dass es zu jeder $n$-elementigen Teilmenge
\mathl{I=\{i_1 , \ldots , i_n\} \subseteq \{1 , \ldots , m\}}{} \zusatzklammer {mit \mathlk{i_1 < \ldots < i_n}{}} {} {} eine $K$-lineare Abbildung \maabbdisp {} {\bigwedge^n V} {K } {} gibt, die
\mathl{v_{i_1} \wedge \ldots \wedge v_{i_n}}{} nicht auf $0$ abbildet, aber alle anderen in Frage stehenden Dachprodukte auf $0$ abbildet. Dazu genügt es nach Satz 57.7, eine \definitionsverweis {alternierende}{}{} \definitionsverweis {multilineare Abbildung}{}{} \maabbdisp {\triangle} {V^n} {K } {} anzugeben mit
\mavergleichskette
{\vergleichskette
{ \triangle { \left( v_{i_1} , \ldots , v_{i_n} \right) } }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} aber mit
\mavergleichskette
{\vergleichskette
{ \triangle { \left( v_{j_1} , \ldots , v_{j_n} \right) } }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für jedes andere aufsteigende Indextupel. Es sei $U$ der von den
\mathbed {v_i} {}
{i \neq i_k} {}
{} {} {} {,} \definitionsverweis {erzeugte Untervektorraum}{}{} von $V$ und
\mavergleichskette
{\vergleichskette
{ W }
{ = }{ V/U }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der \definitionsverweis {Restklassenraum}{}{.} Dann bilden die Bilder der
\mathbed {v_{i_k}} {}
{k=1 , \ldots , n} {}
{} {} {} {,} eine Basis von $W$, und die Bilder von allen anderen $n$-Teilmengen der gegebenen Basis bilden dort keine Basis, da mindestens ein Element davon auf $0$ geht. Wir betrachten nun die \definitionsverweis {zusammengesetzte}{}{} Abbildung
\mathdisp {\triangle: V^n \longrightarrow W^n \cong (K^n)^n \stackrel{ \det }{ \longrightarrow} K} { . }
Diese Abbildung ist nach Satz 16.9 multilinear und nach Satz 16.10 alternierend. Nach Satz 16.11 ist
\mathl{\triangle(z_1 , \ldots , z_n) =0}{} genau dann, wenn die Bilder von $z_i$ in $W$ keine Basis bilden.}
{}

}


Bei
\mavergleichskette
{\vergleichskette
{ V }
{ = }{ K^m }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit der Standardbasis
\mathl{e_1 , \ldots , e_m}{} nennt man die
\mathbed {e_{i_1} \wedge \ldots \wedge e_{i_n}} {mit}
{i_1 < \ldots < i_n} {}
{} {} {} {} die \stichwort {Standardbasis} {} von
\mathl{\bigwedge^n K^m}{.}






\inputbemerkung
{}
{

Zu Basen
\mathl{v_1 , \ldots , v_m}{} und
\mathl{w_1 , \ldots , w_m}{} eines $K$-\definitionsverweis {Vektorraumes}{}{} $V$ mit den Beziehungen
\mavergleichskettedisp
{\vergleichskette
{v_j }
{ =} { \sum_{i = 1}^m a_{ij} w_i }
{ } { }
{ } { }
{ } { }
} {}{}{} erhält man zwischen den Basen
\mathdisp {v_{i_1} \wedge \ldots \wedge v_{i_n} \text{ mit } 1 \leq i_1 < \ldots < i_n \leq m \text{ und } w_{i_1} \wedge \ldots \wedge w_{i_n} \text{ mit } 1 \leq i_1 < \ldots < i_n \leq m} { }
des
\mathl{\bigwedge^n V}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ v_{j_1} \wedge \ldots \wedge v_{j_n} }
{ =} { \sum_{ 1 \leq i_1 < \cdots < i_n \leq m} { \left( \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{ s= 1}^n a_{i_s j_{ \pi (s)} } \right) } w_{i_1} \wedge \ldots \wedge w_{i_n} }
{ } { }
{ } { }
{ } { }
} {}{}{} Dies beruht gemäß Lemma 57.5  (4) auf
\mavergleichskettealign
{\vergleichskettealign
{ v_{j_1} \wedge \ldots \wedge v_{j_n} }
{ =} {{ \left( \sum_{i = 1}^m a_{i j_1 } w_i \right) } \wedge \ldots \wedge { \left( \sum_{i = 1}^m a_{i j_n} w_i \right) } }
{ =} { \sum_{1 \leq i_1 < \cdots < i_n \leq m } { \left( \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{ s= 1}^n a_{i_s j_{ \pi (s)} } \right) } w_{i_1} \wedge \ldots \wedge w_{i_n} }
{ } { }
{ } {}
} {} {}{.}

}





\inputfaktbeweis
{Dachprodukt/Endlichdimensional/Dimensionsangabe/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und $V$ ein \definitionsverweis {endlichdimensionaler}{}{} $K$-\definitionsverweis {Vektor\-raum}{}{} der Dimension $m$.}
\faktfolgerung {Dann besitzt das $n$-te \definitionsverweis {äußere Produkt}{}{}
\mathl{\bigwedge^n V}{} die \definitionsverweis {Dimension}{}{}
\mathdisp {\binom{m}{n}} { . }
}
\faktzusatz {}
\faktzusatz {}

}
{

}

Insbesondere ist die äußere Potenz für
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eindimensional \zusatzklammer {es ist
\mavergleichskettek
{\vergleichskettek
{ \bigwedge^0 V }
{ = }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} und für
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} $m$-dimensional \zusatzklammer {es ist
\mavergleichskettek
{\vergleichskettek
{ \bigwedge^1 V }
{ = }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {.} Für
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ m }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mathl{\bigwedge^m V}{} eindimensional, und die \definitionsverweis {Determinante}{}{} induziert \zusatzklammer {nach einer Identifizierung von $V$ mit $K^m$} {} {} einen \definitionsverweis {Isomorphismus}{}{} \maabbeledisp {} {\bigwedge^m V } { K } {(v_1 , \ldots , v_m) } {\det (v_1 , \ldots , v_m) } {.} Für
\mavergleichskette
{\vergleichskette
{n }
{ > }{m }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sind die äußeren Produkte der Nullraum und besitzen die Dimension $0$.

Wir erweitern die in der letzten Vorlesung gezeigte natürliche Isomorphie
\mavergleichskettedisp
{\vergleichskette
{ { \left( \bigwedge^n V \right) }^* }
{ \cong} { \operatorname{Alt}^n (V,K) }
{ } { }
{ } { }
{ } { }
} {}{}{} zu einer natürlichen Isomorphie
\mavergleichskettedisp
{\vergleichskette
{ \bigwedge^n V^* }
{ \cong} { { \left( \bigwedge^n V \right) }^* }
{ \cong} { \operatorname{Alt}^n (V,K) }
{ } { }
{ } { }
} {}{}{.}





\inputfaktbeweis
{Dachprodukt/Natürliche Dualität/Endlichdimensional/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und $V$ ein \definitionsverweis {dimensionaler}{}{} \definitionsverweis {Vektorraum}{}{.} Es sei
\mathl{k \in \N}{.}}
\faktfolgerung {Dann gibt es eine natürliche Isomorphie \maabbdisp {\psi} { \bigwedge^k V^*} {{ \left( \bigwedge^k V \right) }^* } {} mit
\mavergleichskettedisp
{\vergleichskette
{ (\psi(f_1 \wedge \ldots \wedge f_k)) (v_1 \wedge \ldots \wedge v_k) }
{ =} { \det (f_i (v_j))_{ij} }
{ } { }
{ } { }
{ } { }
} {}{}{} \zusatzklammer {mit \mathlk{f_i \in V^*}{} und \mathlk{v_j \in V}{}} {} {.}}
\faktzusatz {}
\faktzusatz {}

}
{

Wir betrachten die Abbildung \zusatzklammer {mit $k$ Faktoren} {} {} \maabbdisp {} { V^* \times \cdots \times V^*} { \operatorname{Abb} \, (V \times \cdots \times V,K) } {} mit
\mathdisp {(f_1 , \ldots , f_k) \longmapsto { \left( (v_1 , \ldots , v_k ) \longmapsto \det { \left( f_i (v_j) \right) }_{ij} \right) }} { . }
Für fixierte
\mathl{f_1 , \ldots , f_k}{} ist die Abbildung rechts \definitionsverweis {multilinear}{}{} und \definitionsverweis {alternierend}{}{,} wie eine direkte Überprüfung unter Verwendung der Determinantenregeln zeigt. Daher entspricht diese nach Korollar 57.8 einem Element in
\mathl{{ \left( \bigwedge^k V \right) }^*}{.} Insgesamt liegt also eine Abbildung \maabbdisp {} {V^* \times \cdots \times V^* } { { \left( \bigwedge^k V \right) }^* } {} vor. Eine direkte Prüfung zeigt, dass die Gesamtzuordung ebenfalls multilinear und alternierend ist. Aufgrund der universellen Eigenschaft gibt es daher eine \definitionsverweis {lineare Abbildung}{}{} \maabbdisp {\psi} {\bigwedge^k V^* } { { \left( \bigwedge^k V \right) }^* } {.} Diese müssen wir als Isomorphismus nachweisen. Es sei dazu
\mathl{v_1 , \ldots , v_n}{} eine \definitionsverweis {Basis}{}{} von $V$ mit der zugehörigen \definitionsverweis {Dualbasis}{}{}
\mathl{v_1^* , \ldots , v_n^*}{.} Nach Satz 58.1 bilden die
\mathbeddisp {v_{i_1}^* \wedge \ldots \wedge v_{i_k}^*} {}
{1 \leq i_1 < \ldots < i_k \leq n} {}
{} {} {} {,} eine Basis von
\mathl{\bigwedge^k V^*}{.} Ebenso bilden die
\mathbeddisp {v_{i_1} \wedge \ldots \wedge v_{i_k}} {}
{1 \leq i_1 < \ldots < i_k \leq n} {}
{} {} {} {,} eine Basis von
\mathl{\bigwedge^k V}{} mit zugehöriger Dualbasis
\mathl{{ \left( v_{i_1} \wedge \ldots \wedge v_{i_k} \right) }^*}{.} Wir zeigen, dass
\mathl{v_{i_1}^* \wedge \ldots \wedge v_{i_k}^*}{} unter $\psi$ auf
\mathl{( v_{i_1} \wedge \ldots \wedge v_{i_k} )^*}{} abgebildet wird. Für
\mathl{1 \leq j_1 < \ldots < j_k \leq n}{} ist
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ { \left( \psi { \left( v_{i_1}^* \wedge \ldots \wedge v_{i_k}^* \right) } \right) } { \left( v_{j_1} \wedge \ldots \wedge v_{j_k} \right) } }
{ =} { \det { \left( v_{i_r}^* { \left( v_{j_s} \right) }_{1 \leq r, s \leq k} \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Bei
\mavergleichskette
{\vergleichskette
{ \{i_1 , \ldots , i_k \} }
{ \neq }{ \{j_1 , \ldots , j_k \} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt es ein $i_r$, das von allen $j_s$ verschieden ist. Daher ist die $r$-te Zeile der Matrix $0$ und somit ist die Determinante $0$. Wenn dagegen die Indexmengen übereinstimmen, so ergibt sich die \definitionsverweis {Einheitsmatrix}{}{} mit der Determinante $1$. Diese Wirkungsweise stimmt mit der von
\mathl{{ \left( v_{i_1} \wedge \ldots \wedge v_{i_k} \right) }^*}{} überein.

}







\zwischenueberschrift{Dachprodukte bei linearen Abbildungen}





\inputfaktbeweis
{Dachprodukt/Kanonische Abbildung zu linearer Abbildung/Existenz/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.}}
\faktfolgerung {Dann gibt es zu jedem
\mathl{n \in \N}{} eine $K$-lineare Abbildung \maabbdisp {\bigwedge^n \varphi} {\bigwedge^n V} { \bigwedge^n W } {} mit
\mathl{v_1 \wedge \ldots \wedge v_n \mapsto \varphi(v_1) \wedge \ldots \wedge \varphi(v_n)}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Die Abbildung
\mathdisp {V^n \stackrel{\varphi \times \cdots \times \varphi}{\longrightarrow} W^n \stackrel{\delta}{\longrightarrow} \bigwedge^n W} { }
ist nach Aufgabe 16.29 \definitionsverweis {multilinear}{}{} und \definitionsverweis {alternierend}{}{.} Daher gibt es nach Satz 57.7 eine eindeutig bestimmte lineare Abbildung \maabbdisp {} {\bigwedge^n V} {\bigwedge^n W } {} mit
\mathl{v_1 \wedge \ldots \wedge v_n \mapsto \varphi(v_1) \wedge \ldots \wedge \varphi(v_n)}{.}

}





\inputfaktbeweis
{Dachprodukt/Kanonische Abbildung zu linearer Abbildung/Eigenschaften/Fakt}
{Proposition}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.} Zu
\mathl{n \in \N}{} sei \maabbdisp {\bigwedge^n \varphi} {\bigwedge^n V} { \bigwedge^n W } {} die zugehörige $K$-lineare Abbildung.}
\faktuebergang {Dann gelten folgende Eigenschaften.}
\faktfolgerung {\aufzaehlungdrei{Wenn $\varphi$ \definitionsverweis {surjektiv}{}{} ist, dann ist auch
\mathl{\bigwedge^n \varphi}{} surjektiv. }{Wenn $\varphi$ \definitionsverweis {injektiv}{}{} ist, dann ist auch
\mathl{\bigwedge^n \varphi}{} injektiv. }{Wenn $U$ ein weiterer $K$-Vektorraum und \maabbdisp {\psi} {U} {V } {} eine weitere $K$-lineare Abbildung ist, so gilt
\mavergleichskettedisp
{\vergleichskette
{ \bigwedge^n ( \varphi \circ \psi) }
{ =} { { \left( \bigwedge^n \varphi \right) } \circ { \left( \bigwedge^n \psi \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} }}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {}{}{}
{(1). Es seien
\mathl{w_1 , \ldots , w_n \in W}{} gegeben und seien
\mathl{v_1 , \ldots , v_n \in V}{} Urbilder davon, also
\mathl{\varphi(v_i)=w_i}{.} Dann ist
\mavergleichskettedisp
{\vergleichskette
{ { \left( \bigwedge^n \varphi \right) } ( v_1 \wedge \ldots \wedge v_n) }
{ =} { w_1 \wedge \ldots \wedge w_n }
{ } { }
{ } { }
{ } { }
} {}{}{.} Nach Lemma 57.5  (1) ergibt sich die Surjektivität.}
{} \teilbeweis {}{}{}
{(2). Wir können aufgrund der Konstruktion des Dachproduktes annehmen, dass \mathkor {} {V} {und} {W} {} \definitionsverweis {endlichdimensional}{}{} sind. Die Aussage folgt dann aufgrund der expliziten Beschreibung der Basen in Satz 58.1.}
{} \teilbeweis {}{}{}
{(3). Es genügt, die Gleichheit für das Erzeugendensystem
\mathl{u_1 \wedge \ldots \wedge u_n}{} mit
\mathl{u_i \in U}{} zu zeigen, wofür es klar ist.}
{}

}






\zwischenueberschrift{Orientierungen und das Dachprodukt}

Unter Bezug auf das Dachprodukt kann man generell die Orientierung auf einem reellen Vektorraum auf die Orientierung einer Geraden zurückführen, wie die folgende Aussage zeigt.




\inputfaktbeweis
{Vektorraum/Orientierung/Dachprodukt/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{ V }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {endlichdimensionaler}{}{} \definitionsverweis {reeller Vektorraum}{}{} der \definitionsverweis {Dimension}{}{} $n$.}
\faktfolgerung {Dann entsprechen durch die \definitionsverweis {Zuordnung}{}{}
\mathdisp {[v_1 , \ldots , v_n] \longmapsto [ v_1 \wedge \ldots \wedge v_n ]} { }
die \definitionsverweis {Orientierungen}{}{} auf $V$ den Orientierungen auf
\mathl{\bigwedge^n V}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Es seien \mathkor {} {v_1 , \ldots , v_n} {und} {w_1 , \ldots , w_n} {} zwei \definitionsverweis {Basen}{}{} von $V$ mit der Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} v_1 \\\vdots\\ v_n \end{pmatrix} }
{ =} { M \begin{pmatrix} w_1 \\\vdots\\ w_n \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dann gilt nach Korollar 57.6
\mavergleichskettedisp
{\vergleichskette
{ v_1 \wedge \ldots \wedge v_n }
{ =} { ( \det M) w_1 \wedge \ldots \wedge w_n }
{ } { }
{ } { }
{ } { }
} {}{}{,} woraus die \definitionsverweis {Wohldefiniertheit der Abbildung}{}{} und die Aussage folgt.

}